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Preface

ONCE upon a time I was born and bred in Madrid. As time went by,
I grew up and became a physicist – just because I earned a degree in

Physics, not because I knew much about such topic – and I decided to start a
Ph.D. Thesis under the supervision of José Manuel Ud́ıas (Universidad Com-
plutense de Madrid) and Elvira Moya (Instituto de Estructura de la Materia,
CSIC) instead of being useful (?) to the society working in a private company.
A much more profitable task. For more than four years this Ph.D. Thesis has
been my commitment and for good or evil several adventures happened to me
in this period. One of such stories is this Ph.D. Thesis Dissertation, some of
them are sketched in this preface, and some will only be told to the mermaids
in payment for their singing.

In the begining of my thesis I had to struggle with understanding papers
and learning real (not academic) physics in order to improve my knowledge
and to overcome the feeling that all was Greek to me (what somehow still
remains). Undoubtly I would have preferred to become a knight-errant and
fight against dragons, wind-mills, and gorgons, but by that time there were
not much of them left, so I had to content myself with pions and nucleon
resonances, some of them perhaps much more dangerous. This begining was
at Universidad Complutense de Madrid were I spent my time with Armando
Relaño, Eduardo Faleiro, Javier Rodŕıguez, Joaqúın Retamosa, José Maŕıa
Gómez, Laura Muñoz, and Rafael Molina, as well as with two exceptional
visitors from realms far far away, Anton Antonov and Cristina Mart́ınez. At
this time, correspondence with Humberto Garcilazo was helpful to under-
stand pion photoproduction models and to tame the behaviour of the decay
width of the resonances.

In this period, I also enjoyed Instituto de Estructura de la Materia (my
second castle) with Alberto Escuderos, Diego Escrig, Eduardo Garrido, Jorge
Dukelsky, Luis Mario Fraile, Maŕıa José Garćıa, Manuela Turrión, Miguel
Madurga, Pedro Sarriguren, and Susana Jiménez. Sometimes sharing time
and sometimes sharing viands in the banquet room.



XVI Preface

Year 2003 allowed me to gain new experiences travelling overseas to the
United States for one week and afterwards to Italy for three months. In the
woods of Maine (while I was looking for werewolves and fairy godmothers)
I met Vladimir Pascalutsa who showed me how to face and tame one of the
most dangerous kinds of nucleon resonances ever known, the spin-3/2 reso-
nances, monsters that I have never seen but which I guess have a slight oblate
deformation. For three months I improved my training on the art of physics
in the lands of the North of Italy and shared adventures facing the halls of
castles and palaces throughout the Italian orography with Ewan Roche, Jorge
Sampaio, Sara Pérez, Shufang Ban, and Stefan Fritsch with a base palace at
Trento inhabitted by Donatella Rossetti, Luana Slomp, Rachel Weatherhead,
and Wolfram Weise, whose comments where very useful.

Until the end of my Ph.D., my time was split between Universidad Com-
plutense de Madrid and Instituto de Estructura de la Materia. At UCM I
met Joaqúın López and Samuel España. The first one shared time, room,
and cables with me at Jefferson Lab. where we stayed a couple of weeks in
April 2005. At IEM I met Beatriz Errea, Oscar Moreno, Raúl de Diego, and
Sergio Lerma who will inhabit it after my departure. But in this period, I
was tired of rolling like a stone so I decided to lay thy bow of pearl appart,

and thy crystal shining quiver 1 and to retire myself to a monacal life of work
and hesitation – only broken by a one week stay in Seville far away the plains
of Castile to learn from Juan Antonio Caballero – and tell the stories that
happened to me writing this Ph.D. Thesis Dissertation that now the kind
reader has on his hands.

Madrid, 13th March 2006, César Fernández Ramı́rez

1 Benjamin Jonson, The Hymn of Hesperus, Cynthia’s Revel, Act. V, Sc. i.



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XVII

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part I Theoretical Framework

2 Conventions and Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Born Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Vector Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Spin-1/2 Nucleon Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Spin-3/2 Nucleon Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Traditional ∆-Nucleon-Pion Coupling . . . . . . . . . . . . . . . 25
3.4.2 Gauge Invariant Couplings . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Propagators and Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Form Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Invariant Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Born Term Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Vector-Meson Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Nucleon Resonance Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 S11 Resonance Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 S31 Resonance Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 P11 Resonance Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.4 P33 Resonance Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.5 D33 Resonance Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.6 D13 Resonance Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Vertices and Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



XVIII Contents

Part II Study of the Parameters of the Model

6 Mesonic and Hadronic Coupling Constants . . . . . . . . . . . . . . . 55
6.1 Vector-Meson Coupling Constants . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Masses and Widths of the Nucleon Resonances . . . . . . . . . . . . . 57

7 Electromagnetic Coupling Constants of the Nucleon
Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Part III Results

9 Analysis of the Electromagnetic Multipoles . . . . . . . . . . . . . . . 87
9.1 Electromagnetic Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 E2/M1 Ratio of the ∆(1232) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10 Results at Threshold Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11 Differential Cross Sections and Asymmetries . . . . . . . . . . . . . 101
11.1 γp→ π0p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
11.2 γn→ π0n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.3 Charged Pion Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

12 Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

13 Summary and Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Publications Related to this Ph.D. Thesis Dissertation . . . . . . . 125

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



Summary

IN spite of the fact that Quantum Chromodynamics (QCD) is regarded as
the theory of the strong interaction, in the energy regime of the mass of

the nucleon and its resonances a perturbative approach, is not suitable. Thus,
one has to rely on an effective approach if is interested on the properties of
nucleon resonances and processes where they are involved – mainly meson
production which is the dominant decay channel. This thesis is devoted to
pion photoproduction from the nucleon, a classical topic within nuclear and
particle physics, which has been proved as one of the best mechanisms to
study the nucleon and its resonances as well as to study the role of the pion
and resonances in nuclei. I present a pion photoproduction model on the free
nucleon based on an Effective Lagrangian Approach (ELA) which includes the
nucleon resonances (∆(1232), N(1440), N(1520), N(1535), ∆(1620), N(1650),
and ∆(1700)), in addition to Born and vector-meson exchange terms. The
model incorporates a new theoretical treatment of spin-3/2 resonances, first
introduced by Pascalutsa, avoiding pathologies present in previous models.
Other main features of the model are chiral symmetry, gauge invariance,
and crossing symmetry. I use the model combined with modern optimization
techniques based upon genetic algorithms to assess the parameters of the
nucleon resonances on the basis of world data on electromagnetic multipoles.
I present results for electromagnetic multipoles, differential cross sections,
asymmetries, and total cross sections for all one pion photoproduction pro-
cesses on free nucleons. I find overall agreement with data from threshold up
to 1 GeV in laboratory frame.





1 Introduction

SINCE its advent, the Standard Model [HM 84] has become the usual
framework to study particle and intermediate energy physics and it has

proved to be a highly succesful theory1. This framework deals with three of
the interactions present in Nature: the strong, the weak, and the electromag-
netic. Under this model, Nature is constituted by twelve spin-1/2 particles.
Half of them are quarks (u, d, s, c, b, and t) and the other half are leptons (e,
µ, τ , νe, νµ, and ντ ). Neutrinos (ν’s) only interact weakly; e, µ, and τ leptons
interact weakly and electromagnetically; and quarks interact both strongly,
weakly, and electromagnetically. Interactions are mediated by gluons (strong
interaction), photons (electromagnetic interactions), and W and Z bosons
(weak interactions).

Standard Model is a merge of two Quantum Field Theories, Electroweak
Model by Glashow, Weinberg and Salam and Quantum Chromodynamics
(QCD) [HM 84, TW 01]. The electroweak model takes into account the elec-
tromagnetic and the weak interactions, and in its current form it is a theory
with remarkably high predictive power. QCD is regarded as the theory of
the strong interaction. It is quite succesful in the high energy region, but in
the energy regime of the mass of the nucleon and its resonances, a perturba-
tive approach is not suitable. Thus, one has to rely on an effective approach
if is interested on the properties of nucleon resonances and processes where
they are involved. The best way to study the nucleon and its excitations is
through electromagnetic probes, mainly photons and electrons, because the
electromagnetic part of the interaction is well known and it is possible to
isolate the not so well-known strong interacting vertex and get information
about the hadrons.

Three elements play an important role in the study of the nucleon and its
excitations (Fig. 1.1):

1. Experiments [Bec 97, Bla 01, Mol 96, Pei 96, Wis 99].
2. Nucleonic models, v.g. quark models [BM 65, BHF 97, CR 00], skyrme

models [WW 87], lattice QCD [Ale 05, LDW 93], . . . .

1 The existence of a neutrino mass contradicts the Standard Model theory, but its
extension to include such effects is straightforward [AW 03].
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Fig. 1.1. Scheme with the relation of QCD with nucleon models, reaction models,
and experimental observables.

3. Reaction models [FMU 03, FMU 06a] which allow to connect the two
previous elements.

With regards to experiments, the experimental database [AWLR 90a,
ASW 96, ABSW 02, SAID] has been enormously increased thanks to ex-
periments carried out at LEGS ( Laser Electron Gamma Source, Brookhaven
National Laboratory, USA) [Bla 97, Bla 01, Sha 04] and MAMI (MAinz MI-
crotron, Mainz, Germany) [Bec 97, Kru 04, Mol 96, Pei 96, Wis 99] where
photons are produced through laser backscattering and bremsstrahlung re-
spectively. Because of this effort, our knowledge of the ∆(1232) resonance re-
gion has been largely increased, though several discrepancies between Mainz
and Brookhaven analyses still remain, concerning Compton scattering and
unitarity [Bla 01].

Laser backscattering facilities are playing a very important role in the
study of photoproduction processes because in such facilities it is possible
to achieve a good energy resolution, a high degree of polarisation, and a
high photon flux [Fer 04, TL 04] within the same experimental setup. Thus,
polarisation observables, differential cross sections, and electromagnetic mul-
tipoles have been measured with a precision not possible a few years ago. A
full description of the amplitudes in the ∆(1232) region is now available and
the experimentalists intend to improve the knowledge of other kinematical
regions and nucleon resonances. The database is expected to grow signifi-
cantly once data from current experiments have been analysed and when
data from new laser backscattering facilities as GRAAL (GRenoble Anneau
Accelerateur Laser, Grenoble, France) and LEPS (Laser Electron Photons
at SPring-8, Harima, Japan) become available. The last two facilities have
started to run recently and operate at higher energies than LEGS. This sit-
uation opens a lot of possibilities for research on nucleon resonances.

For further reading, a very good review of the state of the art on ex-
perimental meson photoproduction is the paper by Krusche and Schadmand
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[KS 03].

Regarding nucleonic models the most important are Constituent Quark
Models [BHF 97, Fae 00], Skyrme Models [WW 87], and Lattice QCD [Ale 05,
LDW 93]. It is out of the scope of this thesis to go through these models in
detail. One of the best references available about the nucleon structure is the
book by Thomas and Weise [TW 01], where a broad outlook of the topic is
provided. Further reading should include Ref. [Gup 98] which is an excellent
but rather technical introduction to lattice QCD and Ref. [CR 00] which is
a review on quark models.

In this thesis I am concerned with the third element of this analysis: the
reaction model, which allows to connect the nucleonic models with experi-
mental data and to test how reliable the models are [FMU 06a]. I have to
keep in mind that in the energy range of nuclear physics (. GeV) it is not
possible to apply QCD straightforwardly due to the strong coupling constant
that does not allow to perform a perturbative calculation — this energy re-
gion falls in the non-perturbative regime of QCD. One way to overcome this
difficulty consists in the development of an Effective Field Theory inspired on
QCD using Weinberg’s theorem as point of departure. Weinberg’s theorem
states (quoting Weinberg [Wei 79]):

“. . . quantum field theory itself has no content beyond analyticity,
unitarity, cluster decomposition, and symmetry. This can be put more
precisely in the context of perturbation theory: if one writes down the
most general possible Lagrangian, including all terms consistent with
assumed symmetry principles, and then calculates matrix elements
with this Lagrangian to any given order of perturbation theory, the
result will simply be the most general possible S-matrix consistent
with analyticity, perturbative unitarity, cluster decomposition and
the assumed symmetry principles . . . ”

This theorem has not been proved but it is sensible and no counterexam-
ples are known. Although I cannot apply QCD directly to meson production
Weinberg’s theorem provides a mechanism to obtain an effective Lagrangian
theory because it guarantees that once the effective theory is built, it is the
right one, or as good as the right one.

I will only deal with non-strange particles so my starting point will be
QCD reduced to quarks u and d. The symmetry group is then SUL(2) ×
SUR(2) where subindices stand for helicity (L: Left-handed and R: Right-
handed). This symmetry is not observed in nuclear physics because the quarks
are confined and baryons and mesons are the relevant degrees of freedom. Pro-
tons and neutrons constitute the ground state of the theory in the nuclear
physics energy range, with the associated isospin symmetry group SUI(2)
where I stands for isospin. Thus, the ground state of QCD does not share
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the symmetry group of the Lagrangian but a smaller one. This situation is met
quite often in Nature and it is said that the symmetry is spontaneously bro-
ken. When this happens, Goldstone theorem applies (quoting Ref. [Bur 00]):

“. . . Any system for which a continuous, global symmetry is sponta-
neously broken, must contain in its spectrum a state, |G > – called a
Goldstone mode, or Goldstone boson since it must be a boson2 – which
has the defining property that it is created from the ground state
by performing a spacetime-dependent symmetry transformation. In
equations, |G > is defined by the condition that the following matrix
element cannot vanish:

< G|ρ (~r, t) |Ω >6= 0. (1.1)

Here, |Ω > represents the ground state of the system, and ρ ≡ j0

is the density for the conserved charge – guaranteed by Noether’s
theorem – for the spontaneously broken symmetry . . . ”

The Goldstone boson has the following properties (quoting again Ref. [Bur 00]):

“. . . The Goldstone boson must be gapless, in that its energy must
vanish in the limit that its (three-) momentum vanishes. That is:

lim
p→0

E(p) = 0. (1.2)

. . . In relativistic systems, for which E(p) =
√

p2 +m2 where m is the
particle mass, the gapless condition, Eq. (1.2), is the massless of the
Goldstone particle. . . . More generally, the argument just made can be
extended to more complicated matrix elements. One finds in this way
that the Goldstone boson for any exact symmetry must completely
decouple from all of its interactions in the limit that its momentum
vanishes . . . “

If I apply Goldstone theorem to this case I obtain three goldstone bosons
which can be identified with the lightest meson, the pion (π+, π0, π−). In
some effective theories, the quarks are substituted by the nucleon as ground
state and the gluons are substituted by the pion as strong interaction medi-
ator. Thus, the nucleon, the pion, and the nucleon excitations are of great
importance in nuclear physics because they are the relevant degrees of free-
dom in nuclei [EW 88]. The pion plays a prominent role as the carrier of the
strong interaction in the energy range of nuclear physics. An accurate knowl-
edge of the pion, the nucleon, and the nucleon excitations is highly useful in
order to acquire further understanding of nuclei.

2 “Supersymmetry is an exception to this statement, since spontaneously broken
global symmetry ensures the existence of a Goldstone fermion, the goldstino.”
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In the last decades, pion photoproduction has been studied through
many models and using various approaches to decribe nucleon resonances.
Among them there are, Breit-Wigner models [DHKT 99, Wal 69], K matrix
[DMW 91, Ols 74, OO 78, Pen 02, PM 02], Effective Lagrangian Approach
(ELA) [FM 97, FMU 06a, GM 93, SKPN 96, VHRW 95], dynamical models
[FA 03, NBL 90, PT 04, SL 96, SL 01], Breit-Wigner plus a Regge-pole back-
ground to take into account the exchange of heavier mesons [Azn 03], as well
as quark models with pion treated as an elementary particle [ZALW 02].

– Breit-Wigner models such as MAID model [DHKT 99] have two main
contributions, a background which includes the vector-meson exchange
and Born terms, and the resonances which are parametrized using Breit-
wigner amplitudes. Born terms and meson exchange are built using effec-
tive Lagrangians like the ones I use in this thesis. They present problems
in the treatment of the background and its effect in the determination of
the parameters of the resonances as was shown by Aznauryan [Azn 03].
The inclusion of Regge-poles in order to take into account heavy meson
exchange modifies the tail of the ∆(1232) resonance and changes the val-
ues of its constants.

– The K-matrix approach is based upon the use of the reaction matrix K
instead of the scattering matrix S. Both matrices are related through the
Cayley transform [DM 70, Lan 68]:

K = −iS − 1

S + 1
. (1.3)

K is an hermitian matrix (real matrix), therefore, the S matrix obtained
from it is unitary by construction. The problem arises on how to calculate
te reaction matrix K which requires approximations. In Ref. [DMW 91]
the authors use Lagrangians to build the interactions and Watson’s the-
orem [Ros 54, TW 01, Wat 54] (see below) and Olsson’s unitarization
procedure [Ols 74] to relate the elements of the reaction matrix with the
elements of the transition matrix T

T =
K

1 − iK
, (1.4)

up to order e2 in perturbation theory, which is related to the scattering
matrix through:

S = 1 + 2iT. (1.5)

The Olsson unitarization procedure relies entirely on Watson’s theorem
which is valid only up the two pion production threshold. Therefore it
is restricted to the ∆(1232) region and higher energy extensions are not
reliable.
A more complete analysis of meson production under the K-matrix ap-
proach is provided by Refs. [PM 02, Pen 02] where the K matrix is cal-
culated using the Bethe-Salpeter framework.
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I have just mentioned Watson’s theorem. It is convenient to provide more
information about it. Below two pion production threshold there are only
three open channels: γN → γN , πN → πN , and γN ↔ πN . The scattering
matrix S can be expanded in partial waves. Let α stand for a given pion-
nucleon partial wave. The unitarity condition SS† = 1 determines completely
the coupled channel S-matrix (e stands for exponential)

Sα =

[

ηα i
√

1 − η2
αeiδα

i
√

1 − η2
αeiδα ηαe2iδα

]

(1.6)

where δα is the real phase shift, and ηα < 1. Both are real functions of energy.
This result is known as Watson’s theorem [Ros 54, TW 01, Wat 54].

– In dynamical models, a Hamiltonian is built to act in the restricted Hilbert
space H = N ⊕ ∆ ⊕ πN ⊕ γN. These models are essentially coupled-
channel potential models which satisfy unitarity exactly and therefore ful-
fill Watson’s theorem. The models in Ref. [PT 04] and Refs. [SL 96, SL 01]
use two different reductions of the Bethe-Salpeter equation and different
spin-3/2 treatments. Actually, the model presented in this thesis and the
one in Ref. [PT 04] apply the same spin-3/2 Lagrangians. The model by
Fuda and Alharbi [FA 03] incorporates also nucleon resonances N(1440),
N(1520), and N(1535) and provides results up to 600 MeV. These models
have difficulties maintaining electromagnetic gauge invariance and cross-
ing symmetry. For example, model [FA 03] includes only direct contribu-
tions from nucleon resonances and the model in Ref. [NBL 90] recovers
gauge invariance relaxing four momentum conservation at the πNN ver-
tex.

– The pion photoproduction model of Ref. [ZALW 02] is based upon the
model of Ref. [LYL 97] for pseudoscalar meson production. The model of
Ref. [ZALW 02] covers only the ∆(1232) region and applies quark-meson
coupling to calculate adequate form factors. The ∆(1232) resonance is
included phenomenologically.

Although in one way or another all models are phenomenological, in this
thesis I adopt the ELA method because I consider it appealing in many re-
spects and it is the most suitable approach in the energy range from thresh-
old up to 1 GeV in laboratory frame, where the main low-lying resonances
are present. This approach has proved to be a quite succesful tool to study
pion photoproduction at low/threshold energy [BKM 92, BKM 95, TW 01]
and provides the most natural framework to extend the model to pion
electroproduction [GM 93], electromagnetic pion production in composite
nuclei [GM 94, GM 95] and halo nuclei [KB 98] (see Fig. 1.2), two pion
photoproduction [GO 94, GO 96], meson exchange currents [ABCDM 02a,
ABCDM 02b, DBT 94, DKD 76, OD 81], and exclusive X(γ,Nπ)Y processes.



1 Introduction 9

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 100 200 300 400 500 600 700 800 900 1000

M
*  (

G
e
V

)

Eγ
lab (MeV)

∆(1232)

N(1440)

N(1535)
N(1520)

∆(1600) ∆(1620)
N(1650) N(1675) ∆(1700)

N(1680) N(1700) N(1720)
N(1710)

208Pb
40Ca

12C
4He

1H

Fig. 1.2. Available energy for resonance excitations with different targets depend-
ing on the incident photon energy in the laboratory frame. Pole masses of the
nucleon resonances are marked in the figure as horizontal lines (figure provided by
J.R. Vignote, Ref. [Fer 04]).

In the last years, the Lagrangian description of spin-3/2 resonances has
been greatly improved and many pathologies related to the pion-nucleon-
resonance and γ-nucleon-resonance interactions have been overcome [Pas 98].
This fact, combined with the substantial enlargement of the pion photopro-
duction database, demands to revisit the topic and to make the most of these
advances in order to improve our knowledge on nucleon resonances and γ-
nucleon-resonance vertices as well as on the pion photoproduction process
itself.

I focus on the analysis of pion photoproduction on free nucleons with the
aim of establishing a reliable set of coupling constants and achieving an ac-
curate knowledge on nucleon resonances. The latter are needed for further
studies of resonances in nuclear medium as well as to study the structure of
the nucleon through its excitations. This requires to develop a pion photopro-
duction model and to study the parameters of the nucleon resonances within
the model for further implementation in the calculations previously men-
tioned. In this regard, I consider this thesis as a first step towards a deeper
understanding of the role of the pion and the resonances in more compli-



10 1 Introduction

cated processes. My model is an improvement of the one in Ref. [GM 93]
where I have improved the spin-3/2 Lagrangians and explored other varia-
tions which allow me to achieve crossing symmetry and a better description
of the resonance widths.

������� ���	�	
 ����

������� ��	���	
 ����

� � � � ��	�	��
 ����
� ��� � ��	�	�	
 �� �
� ��� � ��	�	�	
 ����
� � � � �������
 ����
� � � � ����	�	
 �� �
� � � � ����	��
 �� �

� � � � ����	�	
 �� �

��� �	� ����	�	
 ����
� ��� � ����	�	
 ����

� ��� � ��	�	�	
 �� �

 "!�!�!

 "#�!�!

 �$�!�!

 "%�!�!

 "&�!�!

'(� )�*+�,��	
 -.� )�*/��,��	


02143�365 027	8:9

;;;;;;;;;;;;; <

=======
============ >

?????????? @

==================== >

=================
===== >

A A A A A A A A A A A ACB

A A A A A A A A A A A A A A A A ACB

D D D D D D D D D D D D D D D DFE

D D D D D D D D D D D D D D D D D DFE

D D D D D D D D D D D D D D D D DFE

D D D D D D D D D D D D D D D D DFE

G G G G G G G

G G G

H

Fig. 1.3. Decays of low-lying nucleon excitations into ground state (nucleon,
P11(939)) through meson emission. I show the resonances rated with three or four
stars by the Particle Data Group (PDG) up to 1.7 GeV [PDG 04]. Masses are the
Breit-Wigner ones. The green lines stand for pion decays and the blue line for η
decay.

In Fig. 1.3 I show the decay scheme of all the nucleon resonances up to
1.7 GeV of mass with three and four stars in Particle Data Group (PDG
in what follows). Notation for nucleon resonances is as follows: The capital
letter stands for the angular momentum L of the final πN state (S, L = 0; P,
L = 1; D, L = 2; . . . ), the first subindex is twice the isospin and the second
twice the spin. Nucleon resonances are named after their Breit-Wigner mass
which is provided between brackets. I note how important is the ∆(1232) as
intermediate state in the two pion decay channel.

The elements included in this model are nucleons, pions, photons, ρ and
ω mesons, as well as all four star spin 1/2 and 3/2 nucleon resonances up to
1.7 GeV in PDG [PDG 04]. Spin-5/2 resonances are not expected to play an
important role in the data analysis carried out in this thesis and are left for
further work.
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This thesis is organised in three parts:

Part I Theoretical Framework: This part provides a full description of
the theory concerning the pion photoproduction model. I provide the
basic features such as conventions and normalisations for cross sections
and amplitudes which will be used throughout this thesis. I describe the
full model and its features in detail, stressing crossing symmetry and
the spin-3/2 treatment which avoids well-known pathologies of previous
models.

Part II Study of the Parameters of the Model: In this part I provide
all the parameters of the model and a broad explanation on the techniques
applied to assess them.

Part III Results: In this part I show results for multipoles, differential
cross sections and remaining physical observables. I also provide the final
remarks and conclusions of the Ph.D. Thesis.





Part I

Theoretical Framework





2 Conventions and Kinematics

NOTATION for kinematics (using natural units ~ = c = 1) is set to (see

Fig. 2.1) k = (Eπ,~k) for the outgoing pion, q = (Eγ , ~q) for the incoming

photon, p = (E, ~p) for the incoming nucleon, and p′ = (E′, ~p′) for the outgoing
nucleon. Mandelstam variables are defined as usual [HM 84]:

s = (p+ q)
2

= (p′ + k)
2
, (2.1)

u = (p′ − q)
2

= (p− k)
2
, (2.2)

t = (k − q)
2

= (p− p′)
2
. (2.3)
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Fig. 2.1. Kinematics of the pion photoproduction process.

The metric tensor:

gµν ≡ diag(1,−1,−1,−1), (2.4)

thus, the scalar product is given by

p2 = pµpµ = gµνp
µpν =

(

p0
)2 − ~p 2. (2.5)

I define the electromagnetic field
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Fµν = ∂µÂν − ∂νÂµ, (2.6)

F̃µν =
1

2
εµναβFαβ , (2.7)

where Âµ is the photon field and εµναβ is the Levi-Civitá tensor.
In this thesis I use the following conventions for the Levi-Civitá tensor

ε0123 = 1, (2.8)

ε123 = 1. (2.9)

The photon polarisation vectors in spherical basis are

Aµ
λγ=±1 = ∓ 1√

2
(0, 1,±i, 0) . (2.10)

Under Ref. [HM 84] conventions and normalisation, the differential cross
section of 2 to n particles is

dσ = δ(4)(p1 + p2 −
n

∑

j=1

kj)
(2π)4

|~v1 − ~v2|
S

2Ep1
Ep2

|M|2 d3~k1

2k0
1(2π)3

· · · d3~kn

2k0
n(2π)3

,

(2.11)

where S =
∏

j
1

hj !
if hj particles are in the final state and |M|2 is the

invariant amplitude squared and averaged.
Then, the pion photoproduction differential cross section can be written

in the center of mass (c.m.) reference system as

σ (θ) ≡ dσ

dΩ∗
π

=
1

64π2

1

s∗
k∗

E∗
γ

|M|2. (2.12)

Whenever a kinematical quantity appears starred it is defined in the c.m.
reference frame. In particular the c.m. absolute values of the photon and
the pion momenta are denoted by q∗ and k∗, which stand for | ~q∗| and | ~k∗|
respectively. The transition probability is

|M|2 =
1

4

∑

λ1λ2λγ

|Aλ1λ2λγ
|2, (2.13)

where Aλ1λ2λγ
is the invariant amplitude, with photon polarisation λγ , initial

nucleon helicity λ1, and final nucleon helicity λ2.
The total space where nucleons are represented is build up by means of

the direct product of isospin, spin, and Minkowski spaces

Total Space = Isospin× Spin×Minkowski. (2.14)

Thus, the nucleon wave function N(p) factorizes as the product of an
isospin function χ and a spin-1/2 wave function u(p)
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N(p) = u(p)χ, (2.15)

with the spinors normalisation

ūr (p)us (p) = 2Mδrs, (2.16)

where M is the mass, p the four-momentum, and s and r the spins.
I can perform the following isospin decomposition

A = χ†
2

(

A0τj +A− 1

2
[τj , τ3] +A+δj3

)

πjχ1, (2.17)

where for simplicity I have dropped helicity subindices. Another two isospin
decompositions are used and are introduced when necessary.

Isospin is an internal symmetry of particles which allows to study under
the same formalism several similar processes. In this way it is possible to
study at the same time γp → π+n, γn → π−p, γp → π0p, and γn → π0n
processes if I put together as an isospin-1/2 particle (nucleon) the proton and
the neutron and as an isospin-1 particle (pion) the π0, π+, and π− states. In
this thesis I consider isospin 0, 1, 1/2, and 3/2 particles (ω, nucleon, pion,
and ∆(1232)). The isospin and the physical basis coincide for the nucleon,
but they are different for the pion. Both representations are related by means
of the equations

π1 =

√
2

2

(

π+ + π−
)

, (2.18)

π2 =

√
2

2i

(

π+ − π−
)

, (2.19)

π3 = π0. (2.20)

Isospin-3/2 is presented in chapter 3.3.

The isospin decomposition of Eq. (2.17) can be related to the physical
amplitudes

A
(

γp→ pπ0
)

= A+ +A0, (2.21)

A
(

γn→ nπ0
)

= A+ −A0, (2.22)

A
(

γn→ pπ−
)

=
√

2
(

A0 −A−
)

, (2.23)

A
(

γp→ nπ+
)

=
√

2
(

A0 +A−
)

. (2.24)

In Eq. (2.17) the τj stands for the Pauli matrices

τ1 =

[

0 1
1 0

]

, τ2 =

[

0 −i
i 0

]

, τ3 =

[

1 0
0 −1

]

; (2.25)

which define a Lie algebra su(2) and hold the commutation relations
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[τj , τk] = 2εjklτl. (2.26)

Another algebra that will be needed in this thesis is the Dirac-Pauli alge-
bra, defined by

{γµ, γν} = 2gµν . (2.27)

A representation of this algebra using 4 × 4 matrices is

γ0 =

[

1 0
0 −1

]

, ~γ =

[

0 ~τ
−~τ 0

]

. (2.28)

Additional matrices based upon Dirac-Pauli algebra that will be used are

γµν =
1

2
[γµ, γν ] , (2.29)

γµνα =
1

2
(γµγνγα − γαγνγµ) , (2.30)

γ5 ≡ γ5 = −iγ0γ1γ2γ3 =

[

0 1
1 0

]

. (2.31)



3 The Model

IN this chapter I present a complete description of the model and its fea-
tures. Using as starting point Weinberg’s theorem [Wei 79], I construct a

fully relativistic, chiral symmetric, gauge invariant, and crossing symmetric
model based on suitable effective Lagrangians for particle couplings. From
these Lagrangians I obtain the invariant amplitudes and physical observ-
ables. This procedure has been adopted in many papers (see, in particular,
Refs. [FM 97, GM 93, SKPN 96, VHRW 95]) and has been proved to be a
succesful way to treat the pion photoproduction process. However, previous
works had pathologies in the description of the spin-3/2 particles which are
not present in my model. The basic idea is to build consistently the most
general Lagrangians for vertices, taking into account all possible symmetries
(crossing symmetry, gauge invariance, chiral symmetry), and to use Feyn-
man rules to obtain invariant amplitudes which can be related to physical
observables. The model can be split into three different types of contributions:
Born terms (Fig. 3.1), vector-mesons exchange (Fig. 3.2, diagram (e)), and
spin-1/2 and spin-3/2 nucleon resonance excitations (Fig. 3.2, diagrams (f)
and (g)). There is no contribution from σ meson exchange because of charge
conjugation violation of the σπγ coupling [DMW 91]. I consider that all the
relevant degrees of freedom are taken into account except perhaps spin-5/2
resonances. My choice of Lagrangians is explained and justified in the forth-
coming sections. All the invariant amplitudes can be found in chapter 4.

3.1 Born Terms

Born terms are the Feynman diagrams shown in Fig. 3.1 in which only pions,
photons, and nucleons are involved. I start with the free Lagrangians for pions
(Klein-Gordon) and nucleons (Dirac) and a phenomenological pion-nucleon
interaction. This last interaction is chosen as a pseudovector (PV) coupling to
the pion because it is the lowest order in derivatives compatible with the low
energy behaviour of the pion and with chiral symmetry [BKM 95, Bur 00,
Leu 94]:

LπNN =
fπN

mπ
N̄γµγ5τj (∂µπj)N, (3.1)
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where mπ is the mass of the pion, fπN is the pseudovector coupling constant,
and the sign is fixed by phenomenology. According to [ALR 90, Ber 90] fπN

is set to f2
πN/4π = 0.0749. The use of the PV coupling for the pion in my

effective Lagrangian grants that low energy theorems of current algebra and
partially conserved axial-vector current (PCAC) hypothesis are incorporated
in the model.

(a) (b) (c) (d)

Fig. 3.1. Feynman diagrams for Born terms: (a) direct or s-channel, (b) crossed or
u-channel, (c) pion in flight or t-channel, and (d) Kroll-Rudermann (contact).

The nucleon free field is the well-known Dirac Lagrangian:

LNucleon
Dirac = N̄ (i/∂ −M)N (3.2)

where N is defined in equation (2.15), and the pion free field is the Klein-
Gordon Lagrangian:

LPion
Klein−Gordon =

1

2
∂µ~π∂

µ~π − 1

2
mπ~π · ~π (3.3)

The electromagnetic field is included in the usual way by minimal coupling
to the photon field (∂α → ∂α + ieQ̂Âµ; where Q̂ is the charge operator) and
taking phenomenologically into account the anomalous magnetic moment of
the nucleon:

L = − ie

4M
FV

2 N̄
1

2

(

F
S/V
2 + τ3

)

γαβNF
αβ . (3.4)

F
S/V
2 is defined as the ratio between isoscalar and isovector form factors

(F
S/V
2 ≡ FS

2 /F
V
2 ).

The interacting Lagrangian for Born terms is:

LBorn = − ieFπÂ
αεjk3πj (∂απk) − eÂαFV

1 N̄γα
1

2

(

F
S/V
1 + τ3

)

N

− ieFV
1

fπN

mπ
ÂαN̄γαγ5

1

2
[τj , τ3]πjN

− ie

4M
FV

2 N̄
1

2

(

F
S/V
2 + τ3

)

γαβNF
αβ

+
fπN

mπ
N̄γαγ5τjN (∂απj) ,

(3.5)
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where e is the absolute value of the electron charge, Fπ is the pion form
factor and F V

j = F p
j − Fn

j , FS
j = F p

j + Fn
j are the isovector and isoscalar

nucleon form factors which at the photon point (q2 = 0) take the values
FS

1 = FV
1 = 1, FS

2 = κp + κn = −0.12, F V
2 = κp − κn = 3.70. I set Fπ = FV

1

in order to ensure gauge invariance. The Fπ = FV
1 relation is inferred from

the U(1) gauge transformation of the coupling and the fields

∂µ → Dµ(θ) = ∂µ + ieQ̂Âµ + ieQ̂∂µθ, (3.6)

N → N(θ) = e−ieQ̂N θN, (3.7)

~π → ~π(θ) = e−ieQ̂πθ~π =





cos (eFπθ)π1 − sin (eFπθ)π2

sin (eFπθ)π1 + cos (eFπθ)π2

π3



 , (3.8)

where θ is a continuous parameter and Q̂ is the charge operator defined by

Q̂ = Q̂N + Q̂π, (3.9)

where

Q̂N =
1

2
FV

1

(

F
S/V
1 + τ3

)

, (3.10)

is the charge operator of the nucleon and

Q̂π = Fπt3, (3.11)

t3 =





0 −i 0
i 0 0
0 0 0



 , (3.12)

is the charge operator of the pion in isospin basis with t3 a matrix from the
Lie algebra su(3).

The PV coupling is (I omit global constants):

L = N̄γαγ5~τ∂
α~πN, (3.13)

which after the gauge transformation reads:

L(θ) = N̄(θ)γαγ5~τD
α(θ)~π(θ)N(θ)

= N̄eieQ̂N θγαγ5~τe
−ieQ̂πθe−ieQ̂N θ

(

∂α + ieQ̂Âα
)

~πN
(3.14)

where I have used the independence between the nucleon and the pion spaces.

The gauge invariance condition reduces to:

~τ(θ) · ~π(θ) = ~τ · ~π, (3.15)

where
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~τ(θ) = eieQ̂N θ~τe−ieQ̂N θ

= eieF V
1 τ3θ/2~τe−ieF V

1 τ3θ/2. (3.16)

The FS
1 part cancels trivially. Expanding (3.16) in detail

eieF V
1 2τ3θ/2τ1e

−ieF V
1 τ3θ/2 = cos

(

eFV
1 θ

)

τ1 − sin
(

eFV
1 θ

)

τ2, (3.17)

eieF V
1 τ3θ/2τ2e

−ieF V
1 τ3θ/2 = sin

(

eFV
1 θ

)

τ1 + cos
(

eFV
1 θ

)

τ2, (3.18)

eieF V
1 τ3θ/2τ3e

−ieF V
1 τ3θ/2 = τ3. (3.19)

Thus

~τ(θ) · ~π(θ) = τ1(θ)π1(θ) + τ2(θ)π2(θ) + τ3(θ)π3(θ) (3.20)

= cos
[

e
(

FV
1 − Fπ

)

θ
]

(τ1π1 + τ2π2) + τ3π3

+ sin
[

e
(

FV
1 − Fπ

)

θ
]

(τ1π2 − τ2π1) . (3.21)

The gauge invariance condition reduces to

sin
[

e
(

FV
1 − Fπ

)

θ
]

=0 ∀θ, (3.22)

cos
[

e
(

FV
1 − Fπ

)

θ
]

=1 ∀θ; (3.23)

thus

Fπ = FV
1 . (3.24)

It is straightforward to check gauge invariance of the amplitudes in chapter
4 performing the replacement Aµ → qµ.

3.2 Vector Mesons

The main contribution of mesons to pion photoproduction is given by ρ
(isospin-1 spin-1) and ω (isospin-0 spin-1) exchange. The phenomenological
Lagrangians which describe vector mesons are [GM 93, DHKT 99]

Lω = −FωNN N̄

[

γα − iKω

2M
γαβ∂

β

]

ωαN +
eGωπγ

mπ
F̃µν (∂µπj) δj3ω

ν ,(3.25)

Lρ = −FρNN N̄

[

γα − iKρ

2M
γαβ∂

β

]

τjρ
α
j N +

eGρπγ

mπ
F̃µν (∂µπj) τjρ

ν
j .(3.26)

Often the πγV coupling is written as L =
eGV πγ

2mπ
F̃µνV

µνπ where V µν ≡
∂µV ν − ∂νV µ and V µ ≡ ρµ, ωµ [DHKT 99]. Both couplings yield the same
amplitude.
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(e) (f) (g)

Fig. 3.2. Feynman diagrams for vector-meson exchange (e) and resonance excita-
tions: (f) direct or s-channel and (g) crossed or u-channel.

3.3 Spin-1/2 Nucleon Resonances

In the model I deal with three different kinds of resonances with spin-1/2: S11,
S31, and P11. I need Lagrangians and amplitudes to describe their behaviour.
The most simple isobar is isospin-1/2 spin-1/2 (S11) which can be described
by the following Lagrangian:

LS11
= − h

fπ
N̄γατjN

∗∂απj −
ie

4M
N̄γαβγ5 (gS + gV τ3)N

∗Fαβ + HC,

(3.27)

where HC stands for hermitian conjugate, h is the strong coupling constant
which can be related to the width of the resonance decay into a nucleon and
a pion, and fπ = 92.3 MeV is the leptonic decay constant of the pion. gV

and gS stand for the isovector and isoscalar form factors of the resonance
respectively. They are defined as gV = gp − gn and gS = gp + gn, where
subscripts p and n stand for the resonances originating from the proton and
the neutron, and can be related to experimental helicity amplitudes at the
photon point as it will be seen in the next sections. The pion coupling has
been chosen pseudovector in order to obtain the right low energy behaviour
and consistency with Born terms. The coupling to the photon employed pre-
serves gauge invariance.

The next isobar is isospin-3/2 spin-1/2 (S31). To incorporate this isospin-
3/2 case I need to define isospinors as in Ref. [Pec 68]:

N∗
1 =

√

1

2





N∗++ −
√

1
3N

∗0

√

1
3N

∗+ −N∗−



 , (3.28)

N∗
2 = i

√

1

2





N∗++ +
√

1
3

√

1
3N

∗+ +N∗−



 , (3.29)

N∗
3 = −

√

2

3

(

N∗+

N∗0

)

. (3.30)

Under this basis, the isospin component of the propagator changes for both
the s-channel (direct) and the u-channel (crossed):
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s-channel

πjN
∗
j N̄

∗
3 = iG(v)

(

2

3
δj3πj −

1

6
[τj , τ3]πj

)

. (3.31)

u-channel

πjN
∗
3 N̄

∗
j = iG(v)

(

2

3
δj3πj +

1

6
[τj , τ3]πj

)

. (3.32)

where G(v) is the spin-1/2 propagator that will be introduced in section
3.5. For the spin-3/2 propagator, the isospin structure is the same. In this
basis and under the same conditions as those for the previous isobar, the S31

Lagrangian is

LS31
= − h

fπ
N̄γαN

∗
j ∂

απj −
ieg

2M
N̄γαβγ5N

∗
3F

αβ + HC. (3.33)

Just one electromagnetic coupling constant is needed here because only the
isovector part of the photon couples to the nucleon to produce an isospin-3/2
field.

The P11 Lagrangian is closely related to S11 being parity the main change.
This change is due to the angular momentum of the resonance, which implies
a different parity for the coupling:

LP11
= − h

fπ
N̄γαγ5τjN

∗∂απj +
ie

4M
N̄γαβ (gS + gV τ3)N

∗Fαβ + HC.

(3.34)

3.4 Spin-3/2 Nucleon Resonances

The treatment of spin-3/2 nucleon-resonance couplings is one of the main
improvements of the present model compared to former ones. The choice
that I use here is motivated by previous studies that identified pathologies in
former spin-3/2 couplings. In what follows I provide a detailed comparison
of both traditional (off-shell extension) and gauge invariant (GI) couplings,
which exhibits the virtues of the prescription adopted here. With regards to
the traditional coupling, I restrict the discussion to the P33 (∆) resonance
and its coupling to the pion and the nucleon, although a similar analysis can
be made for the other spin-3/2 resonances.



3.4 Spin-3/2 Nucleon Resonances 25

3.4.1 Traditional ∆-Nucleon-Pion Coupling

The basis of the traditional point of view is the seminal paper by Nath,
Etemadi, and Kimel [NEK 71], based on the articles by Peccei [Pec 68,
Pec 69] in the late sixties which dealt with this coupling. Peccei worked out
a chiral Lagrangian with a pseudovector coupling to the pion, to ensure the
low energy behaviour, based upon the invariance of the ∆ free field under
the point transformation ∆µ → ∆µ − 1

4γµγβ∆
β and the ansatz γµOµν = 0.

Given the most general Lagrangian L = h∆̄µ
jOµνN∂

νπj I obtain the well
known Peccei Lagrangian [Pec 68, Pec 69]:

LPeccei = ih∆̄α
j (4gαβ − γαγβ)N∂βπj + HC. (3.35)

Restrictions such as Peccei’s ansatz are needed in order to reduce the
number of degrees of freedom (DOF) of the spin-3/2 field. When a massive
spin-3/2 particle is described within the Bargmann and Wigner equations
[Gre 97], a problem of extra DOF arises because a vector-spinor has sixteen
componentes whilst only four are needed. These constraints naturally emerge
in the free theory within the the Euler-Lagrange [NEK 71] or the Hamilto-
nian formalism [Pas 98], but for interacting particles the picture is not so
straightforward and additional restrictions have to be imposed.

Nath et al. [NEK 71] proved that Peccei’s ansatz was too restrictive, de-
veloping a generalisation which – despite of its many pathologies [BDM 89,
NEK 71, Pas 98, Pas 01] – has become the traditional and most popular
approach to interacting spin-3/2 particles for the last thirty years.

The starting point of Nath et al. is the massive spin-3/2 free theory, which
can be found in Refs. [BDM 89, NEK 71, Pec 68]. The following Lagrangian
is defined

L∆ =∆̄α
[

(i∂µγ
µ −M∗) gαβ + iω (γα∂β + γβ∂α)

+
i

2

(

3ω2 + 2ω + 1
)

γα∂
µγµγβ +M∗

(

3ω2 + 3ω + 1
)

γαγβ

]

∆β ,

(3.36)

where ω 6= − 1
2 and the Lagrangian is invariant under the point transformation

∆µ → ∆µ + aγµγν∆ν , (3.37)

ω → ω − 2a

1 + 4a
; (3.38)

with a 6= − 1
4 . Subsidiary constraints γµ∆

µ = 0 and ∂µ∆
µ = 0 appear in order

to reduce the number of DOF to four, as expected for a spin-3/2 particle.
A detailed description of the DOF counting technique is given in reference
[PT 99]. The parameter ω does not affect physical quantities, so that one is
free to set it to the most convenient value, usually ω = −1, which recovers
the Rarita-Schwinger theory [RS 41].
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The point transformation of Eq. (3.37) does not affect the spin-3/2 content
of the free field because of the constraint γµ∆

µ = 0, but for interacting ∆
particles this constraint does not apply, and the excess of DOF shows up as
a contribution to the spin-1/2 sector.

The best available example of this behaviour is the propagator. Given
a spin-λ propagator, it has components with the following spins: λ, λ − 1,
λ − 2,. . . For example, for a free, massive, M ∗ spin-3/2 field, the Rarita-
Schwinger spinor (ω = −1) is

∆µ
r=±3/2,±1/2 (p) =

∑

l,s

〈1, l, 1
2
, s | 3

2
, r〉εµ

l (p)us (p) , (3.39)

where 〈1, l, 1
2 , s | 3

2 , r〉 is a Clebsch-Gordan coefficient [Edm 74] and the spin-1
four vector εµ

l is defined by:

εµ
l =

(

ε0l (p) , ~εl (p)
)

, (3.40)

with

ε0l =
~p · ~εl

M∗
, (3.41)

~εl (p) = ~εl +
~p · ~εl

M∗

~p

E∗ +M∗
, l = ±1, 0; (3.42)

and

~ε±1 = ∓ 1√
2

(1,±i, 0) , ~ε0 = (0, 0, 1) ; (3.43)

The propagator in the Rarita-Schwinger spin-3/2 field theory is

G
3/2
αβ (v) =

/v +M

v2 −M2

[

−gαβ +
1

3
γαγβ +

2

3M2
vαvβ − 1

3M
(vαγβ − γαvβ)

]

,

(3.44)

which has spin-3/2 and spin-1/2 components, made apparent if I rewrite the
propagator as

G
3/2
αβ (v) = − 1

/v −M
P

3/2
αβ +

2

3M2
(/v +M)P

1/2
22,αβ

− 1√
3M

(

P
1/2
12,αβ + P

1/2
21,αβ

)

,

(3.45)

in terms of the spin projectors
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P
3/2
αβ = gαβ − 1

3
γαγβ − 1

3v2
(/vγαvβ + vαγβ/v) , (3.46)

P
1/2
11,αβ =

1

3
γαγβ − vαvβ

3v2
+

1

3v2
(/vγαvβ + vαγβ/v) , (3.47)

P
1/2
22,αβ =

vαvβ

v2
, (3.48)

P
1/2
12,αβ =

1√
3v2

vµvβγαµ, (3.49)

P
1/2
21,αβ =

1√
3v2

vαv
µγµβ . (3.50)

The most general interacting Lagrangian containing only first-order deriva-
tives of the pion field and consistent with (3.36), (3.37), and (3.38) is given
by

Lint = κ∆̄α (gαβ + aγαγβ)N∂βπ + HC, (3.51)

where κ is a coupling constant and a is called the off-shell parameter, which
can be set to different values. This is named off-shell extension framework. If
a = − 1

4 I recover Peccei theory. This family of Lagrangians has been widely
used in pion-nucleon scattering [FM 98, SKPN 96], pion photoproduction
[FM 97, GM 93, NBL 90, SL 96, SL 01, SKPN 96, Pec 68, VHRW 95] and
compton scattering [SKPN 96, PS 95] in the ∆-region, as well as for the de-
scription of meson exchange currents [ABCDM 02a, ABCDM 02b, DBT 94,
DKD 76, OD 81]. The off-shell parameter can be set to a fixed value, a = −1
[NEK 71], a = − 1

4 [GM 93, Pec 68] or just let it run freely [FM 97, PS 95]
in order to get the best possible fit.

However, it is not possible to remove the spin-1/2 sector from the am-
plitude for any value of a [BDM 89]. The physical meaning of the off-
shell parameter is unclear and could be considered just as a free param-
eter with a fuzzy physical meaning employed only for fitting improve-
ment. An important disadvantage is that there is a strong dependence
of the coupling constants on the off-shell parameter, as was proved by
Feuster and Mosel [FM 97]. Other pathologies related to the coupling shown
in Eq. (3.51) are: quantization anomalies (except for a = −1), so that
the naive Feynman rules I read from the Lagrangian are no longer valid
[NEK 71, Pas 98]; Johnson-Sudarshan (JS) problem (non-positive definite
commutators) [Hag 71, JS 61, Sin 73] and Velo-Zwanziger (VZ) problem
(acausal propagations) [Hag 71, Sin 73, VZ 69a, VZ 69b].

A consistent theory for interacting spin-3/2 particles is expected to be
free of such problems. Such a theory has been developed in recent years and
will be presented in the next paragraphs.

3.4.2 Gauge Invariant Couplings

A different approach to massless fields of arbitrary spin λ was developed in
the seventies. It was proved that the massless theory has a simple structure for



28 3 The Model

both integer [Fro 78] and half-integer [FF 78] spin fields, even if the massive
theory is rather complicated. The free massless Lagrangians for half-integer
spin fields can be obtained just from first principles requiring the action to
be invariant under the gauge transformation ψ → ψ + δψ, where δψ = ∂η
[Cur 79, Wei 95, WF 80], ψ is a tensor-spinor with rank ` which stands for
the particle and η a complex tensor-spinor field with rank `−1. For a spin-3/2
field, δψµ = ∂µη, with ψµ a vector spinor and η a spinor field. This gauge
condition reduces the number of DOF of the spin-λ field to two (helicity
states −λ and +λ) as it is required for a massless particle. In this framework,
it is quite simple to build consistent interactions for half-integer spin fields as
suggested by Weinberg and Witten [WW 80] just enforcing them to fulfill this
gauge invariance condition. For example, the spin-3/2 ψµ field should appear
in the interaction as ∂µψν −∂νψµ, the spin-5/2 ψµν as ∂µ∂νψρσ −∂µ∂σψρσ −
∂ρ∂νψµσ + ∂ρ∂σψµν , and, more generally, an arbitrary spin-λ tensor-spinor
field as the antisymetrization of ∂α1

∂α2
· · · ∂α(λ−1/2)

ψβ1β2···β(λ−1/2)
. Thus the

vertices Oµ... of the Feynman diagrams for massless spin-3/2 particles will
fulfill the condition pµOµ... = 0, where p is the four-momentum of the spin-
3/2 particle, µ the vertex index which couples to the spin-3/2 field, and
the dots stand for other possible indices. This is what is called GI coupling
scheme.

I apply this procedure to the ∆ case. Starting from Lagrangian (3.36) for
a free massless spin-3/2 particle, for ω = −1 it can be written as:

L3/2,massless = ψ̄µγ
µνα∂αψν . (3.52)

The inclusion of the mass term:

L3/2,massive = L3/2,massless −M∗ψ̄µγ
µνψν , (3.53)

breaks gauge symmetry, raising the number of DOF from 2 to 4 as it should
be.

Now I consider the interaction. For an interacting massless spin-3/2 par-
ticle I write the Lagrangian:

L = L3/2,massles + Lint. (3.54)

The interaction has been built within the GI coupling scheme and can be
written as [Pas 98]:

Lint = ψ†
µJ

µ + HC, (3.55)

where Jµ has no dependence on ψµ and gauge invariance imposes ∂µJ
µ = 0.

The inclusion of the mass term – if it is properly done as in (3.53) – breaks
gauge symmetry increasing the number of DOF of the spin-3/2 field from 2
to 4 and does not affect Lint [Pas 98, Wei 95]. Hence the number of DOF in
the interacting massive field is the right one and no unphysical components
are present. Focusing on my photoproduction model, I am interested in two
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couplings: the ∆ to the pion and the nucleon, and the ∆ to the photon and
the nucleon. The simplest consistent ∆Nπ-coupling is [Pas 98]:

Lint = − h

fπM∗
N̄εµνλβγ

βγ5
(

∂µN∗ν
j

) (

∂λπj

)

+ HC. (3.56)

I have to clarify that the vector coupling to the pion is a consequence of the
GI prescription. Whithin this prescription, the scalar coupling to the pion
gives no contribution to the amplitude [Pas 98].

Concerning the ∆Nγ coupling, Jones and Scadron [JS 81] suggestion has
been widely used in the (G1, G2) decomposition with [DMW 91, FM 97,
GM 93, VHRW 95, PS 95] or without [NBL 90, SL 96, SL 01] off-shell ex-
tension. Another decomposition (GE , GM ), based upon the same idea as the
Sachs form factors for the nucleon [ESW 60], is also possible. This decompo-
sition is directly connected to physical quantities, as electric and magnetic
multipoles, in particular to the E2/M1 ratio which is of great interest from
both experimental and theoretical points of view [Bla 01, PT 04, TW 01].
This second decomposition is consistent with the GI approach and can be
written as [PP 03]:

L =
3e

2M (M +M∗)
N̄

[

ig1F̃µν + g2γ
5Fµν

]

(∂µN∗ν
3 ) + HC, (3.57)

where g1 and g2 can be easily related to GE and GM [PT 99] by:

GE = −1

2

M∗ −M

M∗ +M
g2, (3.58)

GM = g1 +
1

2

M∗ −M

M∗ +M
g2. (3.59)

Other possible consistent choices can be found in Refs. [PT 99, KS 01].

GI couplings have been proved to be free of the pathologies which are
inherent to the traditional scheme. No anomalies are found in the quanti-
zation; neither JS nor VZ problems appear; and no spin-1/2 sector arises
when the invariant amplitudes are calculated [Pas 98]. Moreover, Pascalutsa
and Timmermans [PT 99] claim that DOF counting is the reason why GI
couplings are consistent, while the off-shell extension couplings of Nath et

al. are not. They blame the unphysical extra components for the appearance
of pathologies. Both, GI (3.56) and traditional (3.51) couplings, provide the
same result on-shell (if I set properly the coupling constants). However, their
off-shell behaviour is completely different.

Based on the previous discussion, the P33 Lagrangian that will be used
in this work is:
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LP33
= − h

fπM∗
N̄εµνλβγ

βγ5
(

∂µN∗ν
j

) (

∂λπj

)

+
3e

2M (M +M∗)
N̄

[

ig1F̃µν + g2γ
5Fµν

]

(∂µN∗ν
3 )

+ HC.

(3.60)

From this expression it is straightforward to obtain phenomenological
Lagrangians for other spin-3/2 resonances. To obtain the P13 resonance La-
grangian from (3.60) only an isospin change is needed:

N∗α
j → τjN

∗α, j = 1, 2, 3; (3.61)

for the strong vertex, and

N∗α
3 → N∗α, gj → 1

2

[

gS
j + gV

j τ3
]

, j = 1, 2; (3.62)

for the photon vertex.
Thus the Lagrangian is

LP13
= − h

fπM∗
N̄εµνλβγ

βγ5τj (∂µN∗ν)
(

∂λπj

)

+
3e

4M (M +M∗)
N̄

[

i
(

gS
1 + gV

1 τ3
)

F̃µν

+
(

gS
2 + gV

2 τ3
)

γ5Fµν

]

(∂µN∗ν) + HC.

(3.63)

Lagrangians for D33 and D13 resonances are obtained easily from P33 and
P13. I only need to change the parity of the coupling placing an overall γ5:

LD33
= − h

fπM∗
N̄εµνλβγ

β
(

∂µN∗ν
j

) (

∂λπj

)

+
3e

2M (M +M∗)
N̄

[

ig1F̃µνγ5 + g2Fµν

]

(∂µN∗ν
3 )

+ HC,

(3.64)

LD13
= − h

fπM∗
N̄εµνλβγ

βτj (∂µN∗ν)
(

∂λπj

)

+
3e

4M (M +M∗)
N̄

[

i
(

gS
1 + gV

1 τ3
)

F̃µνγ5

+
(

gS
2 + gV

2 τ3
)

Fµν

]

(∂µN∗ν) + HC.

(3.65)

Although I restrict myself to spin-3/2, it is clear that higher spin inter-
actions can be built within the same theoretical framework. This is left to
future work.
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3.5 Propagators and Widths

To calculate the invariant amplitudes I need five different types of propaga-
tors:

1. Spin-0 propagator for the t-channel of the Born terms (pion exchange)

iG0 (v) = i
δjl

v2 −m2
π

. (3.66)

2. Spin-1/2 propagator for the s- and u- channels of the Born terms

iG
1/2
N (v) = i

/v +M

v2 −M2
. (3.67)

3. Spin-1 propagator for the vector-meson exchange diagrams

iG1
µν (v) = − i

v2 −m2
V

(

gµν − vµvν

m2
V

)

. (3.68)

4. Spin-1/2 propagator with a phenomenological width for spin-1/2 nucleon
resonances.

5. Spin-3/2 propagator with a phenomenological width for spin-3/2 nucleon
resonances.

With regards to the propagators of the resonances, for a spin-1/2 reso-
nance I use

iG(v) = i
/v +M∗

v2 −M∗2 + iM∗Γ (s, u)
, (3.69)

and for the spin-3/2 propagator I use the Rarita-Schwinger propagator:

iGαβ(v) =i
/v +M∗

v2 −M∗2 + iM∗Γ (s, u)

×
[

−gαβ +
1

3
γαγβ +

2

3M∗2
vαvβ − 1

3M∗
(vαγβ − γαvβ)

]

,

(3.70)

where v is the resonance four-momentum. A phenomenological width Γ (s, u)
is included in the propagator denominator consistently with what is obtained
if I dress it with pions [KS 00, PP 03].

The energy dependence of the width is chosen phenomenologically as

Γ (s, u) =
∑

j

ΓjXj (s, u) , (3.71)

where j = π, ππ, η stands for the different decay channels and

Xj (s, u) ≡ Xj (s) +Xj (u) −Xj (s)Xj (u) , (3.72)
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with Xj (l) given by

Xj (l) = 2

(

|~kj |

|~kj0|

)2L+1

1 +
(

|~kj |

|~kj0|

)2L+3
Θ

(

l − (M +mj)
2
)

, (3.73)

where L is the angular momentum of the resonance, Θ is the Heaviside step
function, and

|~kj | =

√

(

l −M2 −m2
j

)2 − 4m2
jM

2/
(

2
√
l
)

, (3.74)

with mππ ≡ 2mπ and |~kj0| = |~kj | when l = M∗2.
This parametrization has been built in order to fulfill the following con-

ditions:

(i) Γ = Γ0 at
√
s = M∗,

(ii) Γ → 0 when |~kj | → 0,

(iii) a correct angular momentum barrier at threshold |~kj |2L+1,
(iv) crossing symmetry.

This parametrization of the width is an improvement over the one used
in Ref. [GM 93] and includes decays to η and 2π which take into account
inelastic channels [DHKT 99] and condition (iv). The width contributes to
both s- and u-channels, so that crossing symmetry is preserved due to Eq.
(3.72). In [FM 97] the authors made an analysis of the energy dependence of
the width. It was concluded that, as long as it provides a decrease of the width
beyond the resonance position, the specific way in which Xj is parametrized
is not so important.

3.6 Form Factors

For the numerical calculations I include form factors for Born terms and vec-
tor mesons, in order to regularize the high energy behaviour of these terms.
I choose form factors as suggested by Davidson and Workman [DW 01a,
DW 01b] that allow to fulfill gauge invariance and crossing symmetry. Actu-
ally, Xj(s, u) in Eq. (3.72) also follows this choice. Thus for Born terms:

F̂B(s, u, t) =F1(s) + F2(u) + F3(t) − F1(s)F2(u)

− F1(s)F3(t) − F2(u)F3(t) + F1(s)F2(u)F3(t),
(3.75)

where,

F1(s) =
[

1 +
(

s−M2
)2
/Λ4

B

]−1

, (3.76)

F2(u) =
[

1 +
(

u−M2
)2
/Λ4

B

]−1

, (3.77)

F3(t) =
[

1 +
(

t−m2
π

)2
/Λ4

B

]−1

. (3.78)
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For vector mesons I adopt F̂V (t) = F3(t) with the changes mπ → mV and
ΛB → ΛV . In order to have as few free parameters as possible in the numerical
calculations I use the same Λ ≡ ΛB = ΛV for both vector mesons and Born
terms. For the resonance-pion-nucleon vertex, the form factor

√

Xπ (s, u) has
to be used for consistency with the width employed in the propagator dis-
cussed previously.

Models like the ones by Garcilazo and Moya de Guerra [GM 93] and
Feuster and Mosel [FM 97] needed a cutoff in the u-channels of spin-3/2 res-
onances in order to obtain a good description of observables. This cutoff was
needed because the high-energy contributions of these diagrams are not re-
duced by the denominator of the propagator. In Ref. [GM 93] it was argued
that the need of this cutoff could be justified by the two possible interpreta-
tions of the resonance excitation. From the point of view of an effective field
theory, u-channels should be introduced with their full strength. On the other
hand if I consider resonances as pure πN rescattering states (Chew-Low de-
scription), the contribution from the u-channels should be dropped. Hence,
the cutoff was interpreted in Ref. [GM 93] as a way to have an interplay be-
tween both descriptions. However, in such approach crossing symmetry was
broken. My present model relies entirely on effective field theory, I preserve
crossing symmetry, and there is no need for that cutoff in the u-channel
amplitudes. Ought to the vector coupling to the resonances, the u-channel
amplitudes are suppresed by themselves which is a strong point in favor of
the GI coupling.





4 Invariant Amplitudes

IN this chapter I provide all the invariant amplitudes needed for the cal-
culations in the isospin decomposition and the notation for kinematics of

chapter 2. I note by v the four momentum of the exchanged particle in each
diagram.

4.1 Born Term Amplitudes

s-channel (Diagram (a) in Fig. 3.1)

A0
s = −FB(s, u, t)

efπN

2mπ
ū(p′)/kγ5

/v +M

s−M2

[

/AFS
1 − FS

2

2M
Aαγαβq

β

]

u(p)(4.1)

A−
s = A+

s = A0
s

(

FS
1 → FV

1 , F
S
2 → FV

2

)

(4.2)

u-channel (Diagram (b) in Fig. 3.1)

A0
u = −FB(s, u, t)

efπN

2mπ
ū(p′)

[

/AFS
1 − FS

2

2M
Aαγαβq

β

]

/v +M

u−M2
/kγ5u(p)(4.3)

A+
u = −A−

u = A0
u

(

FS
1 → FV

1 , F
S
2 → FV

2

)

(4.4)

t-channel (Diagram (c) in Fig. 3.1)

A−
t = −eFB(s, u, t)F V

1

fπN

mπ
ū(p′)

A · (v + k)

t−m2
π

/vγ5u(p) (4.5)

Kroll-Rudermann (Contact) Term (Diagram (d) in Fig. 3.1)

A−
KR = eFB(s, u, t)F V

1

fπN

mπ
ū(p′)/Aγ5u(p) (4.6)
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4.2 Vector-Meson Amplitudes

ρ Meson (Diagram (f) in Fig. 3.2)

A0
ρ = −ieFρ(t)

GρπγFρNN

mπ
ū(p′)

εσλνµq
σkνAλgαµ

t−m2
ρ

[

γα +
Kρ

2M
γαβv

β

]

u(p)

(4.7)

ω Meson (Diagram (f) in Fig. 3.2)

A+
ω = −ieFω(t)

GωπγFωNN

mπ
ū(p′)

εσλνµq
σkνAλgαµ

t−m2
ω

[

γα +
Kω

2M
γαβv

β

]

u(p)

(4.8)

4.3 Nucleon Resonance Amplitudes

4.3.1 S11 Resonance Amplitudes

s-channel

A0
s,S11

=
√

Xπ(s, u)
egSh

2Mfπ
ū(p′)/kG(v)Aµγµνq

νγ5u(p) (4.9)

A+
s,S11

= A−
s,S11

= A0
s,S11

(gS → gV ) (4.10)

u-channel

A0
u,S11

= −
√

Xπ(s, u)
egSh

2Mfπ
ū(p′)Aµγµνq

νγ5G(v)/ku(p) (4.11)

A+
u,S11

= −A−
u,S11

= A0
u,S11

(gS → gV ) (4.12)

4.3.2 S31 Resonance Amplitudes

s-channel

A+
s,S31

= −2A−
s,S31

=
√

Xπ(s, u)
2

3

egh

Mfπ
ū(p′)/kG(v)Aµγµνq

νγ5u(p) (4.13)

u-channel

A+
u,S31

= 2A−
u,S31

= −
√

Xπ(s, u)
2

3

egh

Mfπ
ū(p′)Aµγµνq

νγ5G(v)/ku(p) (4.14)
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4.3.3 P11 Resonance Amplitudes

s-channel

A0
s,P11

=
√

Xπ(s, u)
egSh

2Mfπ
ū(p′)/kγ5G(v)Aµγµνq

νu(p) (4.15)

A+
s,P11

= A−
s,P11

= A0
s,P11

(gS → gV ) (4.16)

u-channel

A0
u,P11

=
√

Xπ(s, u)
egSh

2Mfπ
ū(p′)Aµγµνq

νG(v)/kγ5u(p) (4.17)

A+
u,P11

= −A−
u,P11

= A0
u,P11

(gS → gV ) (4.18)

4.3.4 P33 Resonance Amplitudes

s-channel

A+
s,P33

= −2A−
s,P33

=
√

Xπ(s, u)
−ihe

fπM∗M (M∗ +M)

× ū (p′) εµνλβv
µkλγβγ5Gνα (v) (4.19)

×
[

ig1εωαρφv
ωqρAφ + g2γ

5 (v · qAα − v ·Aqα)
]

u (p)

u-channel

A+
u,P33

= 2A−
u,P33

=
√

Xπ(s, u)
ihe

fπM∗M (M∗ +M)

× ū (p′)
[

ig1εµναβv
µqαAβ + g2γ

5 (v · qAν − v ·Aqν)
]

(4.20)

× Gνφ (v) εωφλρv
ωkλγργ5u (p)

4.3.5 D33 Resonance Amplitudes

s-channel

A+
s,D33

= −2A−
s,D33

=
√

Xπ(s, u)
ihe

fπMM∗ (M +M∗)

× ū (p′) εµνλβv
µkλγβGλα (v) (4.21)

×
[

ig1εωαρφv
ωqρAφγ5 + g2 (v · qAα − v ·Aqα)

]

u (p)
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u-channel

A+
u,D33

= 2A−
u,D33

=
√

Xπ(s, u)
ieh

fπMM∗ (M +M∗)

× ū (p′)
[

ig1εµναβq
αvµAβγ5 + g2 (v · qAν − v ·Aqν)

]

(4.22)

× Gνλ (v) εωλρφv
ωkργφu (p)

4.3.6 D13 Resonance Amplitudes

s-channel

A0
s,D13

=
√

Xπ(s, u)
3ihe

4fπMM∗ (M +M∗)

× ū (p′) εµνλβv
µkλγβGλα (v) (4.23)

×
[

igS
1 εωαρφv

ωqρAφγ5 + gS
2 (v · qAα − v ·Aqα)

]

u (p)

A+
s,D13

= A−
s,D13

= A0
s,D13

(

gS
1,2 → gV

1,2

)

(4.24)

u-channel

A0
u,D13

=
√

Xπ(s, u)
3ieh

4fπMM∗ (M +M∗)

× ū (p′)
[

ig1εµναβq
αvµAβγ5 + g2 (v · qAν − v ·Aqν)

]

(4.25)

× Gνλ (v) εωλρφv
ωkργφu (p)

A+
u,D13

= −A−
u,D13

= A0
u,D13

(

gS
1,2 → gV

1,2

)

(4.26)



5 Vertices and Propagators

THIS chapter provides a summary of all the vertices and propagators used
in this thesis.

5.1 Vertices

Vertex NγN

q ↓

−→
p

−→
p′

Aα

N N

Γα = − ie

[

1

2
FV

1 (Q2)
(

F
S/V
1 (Q2) + τ3

)

γα

− 1

4M
FV

2 (Q2)
(

F
S/V
2 (Q2) + τ3

)

γαβq
β

] (5.1)

Vertex πγπ

q ↓

−→
p

−→
p′

Aα

πj πk

Γ jk
α = eFV

1 (Q2) (p+ p′)α εjk3 (5.2)
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Vertex NγπN (Kroll-Ruderman)

q ↘
−→

p
−→
p′

↗ k

Aα πj

N N

Γ j
α =

efπN

2mπ
FV

1 (Q2)γαγ5[τj , τ3] (5.3)

Vertex NπN

k ↑

−→
p

−→
p′

πj

N N

Γ j = −fπN

mπ
γαγ5τjk

α (5.4)

Vertex NωN

q ↓

−→
p

−→
p′

ωα

N N

Γα = −iFωNN

[

γα − Kω

2M
γαβq

β

]

(5.5)
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Vertex ωγπ

q ↓

−→
p

−→
p′

Aλ

ωµ πj

Γ j
λµ =

ieGωπγ

m
εσλνµq

σp′νδj3 (5.6)

Vértice NρN

q ↓

−→
p

−→
p′

ρα
j

N N

Γ j
α = −iFρNN

[

γα − Kρ

2M
γαβq

β

]

τj (5.7)

Vertex ργπ.

q ↓

−→
p

−→
p′

Aλ

ρµ
j

πj

Γ j
λµ =

ieGρπγ

m
εσλνµq

σp′ντj (5.8)
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Vertex S11πN

k ↑

−→
p′

−→
p

πj

N∗ N

Γ j =
h

fπ
γαk

ατj (5.9)

Vertex NπS11

k ↑

−→
p

−→
p′

πj

N N∗

Γ j =
h

fπ
γαk

ατj (5.10)

Vertex S11γN

q ↓

−→
p′

−→
p

Aα

N∗ N

Γα = i
e

2M
γαβγ5 (GS +GV τ3) q

β (5.11)
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Vertex NγS11

q ↓

−→
p

−→
p′

Aα

N N∗

Γα = −i e

2M
γαβγ5 (GS +GV τ3) q

β (5.12)

Vertex P11πN

k ↑

−→
p′

−→
p

πj

N∗ N

Γ j =
h

fπ
γαγ5k

ατj (5.13)

Vertex NπP11

k ↑

−→
p

−→
p′

πj

N N∗

Γ j =
h

fπ
γαγ5k

ατj (5.14)



44 5 Vertices and Propagators

Vertex P11γN

q ↓

−→
p′

−→
p

Aα

N∗ N

Γα = −i e

2M
γαβ (GS +GV τ3) q

β (5.15)

Vertex NγP11

q ↓

−→
p

−→
p′

Aα

N N∗

Γα = −i e

2M
γαβ (GS +GV τ3) q

β (5.16)

Vertex S31πN

k ↑

−→
p′

−→
p′

πj

N∗
j N

Γ =
h

fπ
γαk

α (5.17)
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Vertex NπS31

k ↑

−→
p

−→
p′

πj

N N∗
j

Γ =
h

fπ
γαk

α (5.18)

Vertex S31γN

q ↓

−→
p′

−→
p

Aα

N∗
3 N

Γα = i
eG

M
γαβγ5q

β (5.19)

Vertex NγS31

q ↓

−→
p

−→
p′

Aα

N N∗
3

Γα = −i eG
M
γαβγ5q

β (5.20)



46 5 Vertices and Propagators

Vertex P33πN

k ↑

−→
p′

−→
p

πj

N∗α
j N

Γν = −i h

M∗fπ
εµνλβγ

βp′µkλγ5 (5.21)

Vertex NπP33

k ↑

−→
p

−→
p′

πj

N N∗α
j

Γν = i
h

M∗fπ
εµνλβγ

βp′µkλγ5 (5.22)

Vertex P33γN

q ↓

−→
p′

−→
p

Aα

N∗λ
3

N

Γνβ = −i3
2

e

M (M +M∗)

[

ig1εµναβp
′µqα + g2γ

5
(

p′ · qgνβ − p′βqν
)]

(5.23)
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Vertex NγP33

q ↓

−→
p

−→
p′

Aα

N N∗λ
3

Γνβ = −i3
2

e

M (M +M∗)

[

ig1εµναβp
′µqα + g2γ

5
(

p′ · qgνβ − p′βqν
)]

(5.24)

Vertex P13πN

k ↑

−→
p′

−→
p

πj

N∗α N

Γν = −i h

M∗fπ
εµνλβγ

βp′µkλγ5τj (5.25)

Vertex NπP13

k ↑

−→
p

−→
p′

πj

N N∗α

Γ j
ν = i

h

M∗fπ
εµνλβγ

βp′µkλγ5τj (5.26)
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Vertex P13γN

q ↓

−→
p′

−→
p

Aα

N∗λ N

Γνβ = − i
3

4

e

M (M +M∗)

[

i
(

gS
1 + gV

1 τ3
)

εµναβp
′µqα

+
(

gS
2 + gV

2 τ3
)

γ5
(

p′ · qgνβ − p′βqν
)]

(5.27)

Vertex NγP13

q ↓

−→
p

−→
p′

Aα

N N∗λ

Γνβ = − i
3

4

e

M (M +M∗)

[

i
(

gS
1 + gV

1 τ3
)

εµναβp
′µqα

+
(

gS
2 + gV

2 τ3
)

γ5
(

p′ · qgνβ − p′βqν
)]

(5.28)

Vertex D33πN

k ↑

−→
p′

−→
p

πj

N∗α
j N

Γν = −i h

M∗fπ
εµνλβγ

βp′µkλ (5.29)
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Vertex NπD33

k ↑

−→
p

−→
p′

πj

N N∗α
j

Γν = i
h

M∗fπ
εµνλβγ

βp′µkλ (5.30)

Vertex D33γN

q ↓

−→
p′

−→
p

Aα

N∗λ
3

N

Γνβ = i
3

2

e

M (M +M∗)

[

ig1εµναβp
′µqαγ5 + g2

(

p′ · qgνβ − p′βqν
)]

(5.31)

Vertex NγD33

q ↓

−→
p

−→
p′

Aα

N N∗λ
3

Γνβ = −i3
2

e

M (M +M∗)

[

ig1εµναβp
′µqαγ5 + g2

(

p′ · qgνβ − p′βqν
)]

(5.32)
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Vertex D13πN

k ↑

−→
p′

−→
p

πj

N∗α
j N

Γ j
ν = −i h

M∗fπ
εµνλβγ

βp′µkλτj (5.33)

Vertex NπD13

k ↑

−→
p

−→
p′

πj

N N∗α
j

Γ j
ν = i

h

M∗fπ
εµνλβγ

βp′µkλτj (5.34)

Vertex D13γN

q ↓

−→
p′

−→
p

Aα

N∗λ
3

N

Γνβ =i
3

4

e

M (M +M∗)

[

i
(

gS
1 + gV

1 τ3
)

εµναβp
′µqαγ5

+
(

gS
2 + gV

2 τ3
) (

p′ · qgνβ − p′βqν
)]

(5.35)
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Vertex NγD13

q ↓

−→
p

−→
p′

Aα

N N∗λ
3

Γνβ = − i
3

4

e

M (M +M∗)

[

i
(

gS
1 + gV

1 τ3
)

εµναβp
′µqαγ5

+
(

gS
2 + gV

2 τ3
) (

p′ · qgνβ − p′βqν
)]

(5.36)

5.2 Propagators

Spin-0 Propagator

j
q l

iG0 (q) = i
δjl

q2 −m2
π

(5.37)

Spin-1/2 Propagator (Nucleon)

q

iG
1/2
N (q) = i

/q +M

q2 −M2
(5.38)
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Spin-1/2 Propagator (Spin-1/2 Resonances)

q

iG
1/2
R (q) = i

/q +M

q2 −M2 + iMΓ (s, u) (q2)
(5.39)

Spin-1 Propagator (Vector Mesons)

µ
q

ν

iG1
µν (q) = − i

q2 −m2
V

(

gµν − qµqν
m2

V

)

(5.40)

Spin-3/2 Propagator (Spin-3/2 Resonances)

α
q

β

iG
3/2
αβ (q) = i

/q +M

q2 −M2 + iMΓ (s, u) (q2)
[−gαβ

+
1

3
γαγβ +

2

3M2
qαqβ − 1

3M
(qαγβ − γαqβ)

] (5.41)



Part II

Study of the Parameters of the Model





6 Mesonic and Hadronic Coupling Constants

THE first choice that has to be made is the nucleon resonances to be
taken into account. I have included seven resonances: ∆(1232), N(1440),

N(1520), N(1535), ∆(1620), N(1650), and ∆(1700) which are all the four star
nucleon resonances in PDG up to 1.7 GeV and up to spin-3/2. Among four
star resonances only spin-5/2 N(1675) and N(1680) resonances are left aside
for future work. In table 6.1 I show all the nucleon resonances and their status
as they are presented in PDG.

In a Lagrangian model, the determination of the parameters of a single
resonance is affected by the determination of the parameters of the other res-
onances. Thus, I have decided not to include three star resonances because
their contribution would be very small and would introduce a sort of noise
in the determination of the parameters.

There are quite a number of parameters to be set in the model. Some
of them are well known and are established independently of the photo-
production data, such as nucleon and pion masses (M = 938.9175 MeV,
mπ0 = 134.9766 MeV, mπ± = 139.5673 MeV), but some others have to be
established from fits to the pion photoproduction data, namely electromag-
netic coupling constants. In the forthcoming paragraphs I give the values of
every parameter of the model as well as the procedures employed to establish
them.

6.1 Vector-Meson Coupling Constants

Vector-meson contributions are characterized by eleven parameters: mω,
FωNN , Kω, Gωπγ , mρ0 , mρ± , FρNN , Kρ, Gρ0πγ , Gρ±πγ , and cutoff Λ. Masses
are given by PDG and the πγV couplings are related to the decay widths
ΓπγV of PDG [PDG 04] through the equation:

ΓV →πγ =
e2G2

V πγ

96π

m3
V

m2
π

(

1 − m2
π

m2
V

)3

, (6.1)

which is obtained from the equation for the decay of one particle into two
[HM 84]:



56 6 Mesonic and Hadronic Coupling Constants

Table 6.1. Nucleonic resonances in PDG. Resonances are catalogued by the PDG
depending on a certain status Nucleon resonances are clasified according to a status
which depends on the available experimental data. The nucleon resonances status
is clasified as follows: **** Existence is certain, and properties are at least fairly
well explored; *** Existence ranges from very likely to certain, but further confir-
mation is desirable and/or quantum numbers, branching fractions, etc, are not well
determined; ** Evidence of existence is only fair; * Evidence of existence is poor.

Nucleon Resonance Overall Status Nucleon Resonance Overall Status

N(1440) P11 **** ∆(1232) P33 ****
N(1520) D13 **** ∆(1600) P33 ***
N(1535) S11 **** ∆(1620) S31 ****
N(1650) S11 **** ∆(1700) D33 ****
N(1675) D15 **** ∆(1750) P31 *
N(1680) F15 **** ∆(1900) S31 **
N(1700) D13 *** ∆(1905) F35 ****
N(1710) P11 *** ∆(1910) P31 ****
N(1720) P13 **** ∆(1920) P33 ***
N(1900) P13 ** ∆(1930) D35 ***
N(1990) F17 ** ∆(1940) D33 *
N(2000) F15 ** ∆(1950) F37 ****
N(2080) D13 ** ∆(2000) F35 **
N(2090) S11 * ∆(2150) S31 *
N(2100) P11 * ∆(2200) G37 *
N(2190) G17 **** ∆(2300) H39 **
N(2200) D15 ** ∆(2350) D35 *
N(2220) H19 **** ∆(2390) F37 *
N(2250) G19 **** ∆(2400) G39 **
N(2600) I1 11 *** ∆(2420) H3 11 ****
N(2700) K1 13 ** ∆(2750) I3 13 **

∆(2950) K3 15 **

���

�

���

���
	 �
�

Fig. 6.1. Feynman diagram of the decay of a vector meson into a pion and a
photon.
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Γ (A→ 1 + 2) =
|~k1|

32π2M2
A

∫

dΩ|M|2, (6.2)

where Ω is the solid angle, MA the mass of the decaying particle, and ~k1

the three momentum of the pion. For the vector-meson decay the invariant
amplitude is

|M|2 =
∑

helicities

e2G2
V πγ

m2
|εσλνµq

σp′νAλV µ|2 =
3

2

e2G2
V πγ

k∗m2m2
V

(

m2
V −m2

)3
,

(6.3)

which I obtain from the Feynman diagram in Fig. 6.1.

I take from PDG the following values: mω = 782.57 MeV, mρ0 = 768.5
MeV, mρ± = 766.5 MeV, Γρ0πγ = 0.121 MeV (Gρ0πγ = 0.1161), Γρ±πγ =
0.068 MeV (Gρ±πγ = 0.0906), and Γωπγ = 0.70476 MeV (Gωπγ = 0.2804).
Thus, only five constants remain unknown. One of them is the cutoff Λ which
will be discussed later. The four remaining constants are taken from the
analysis of nucleon electromagnetic form factors by Mergell, Meißner, and
Drechsel [MMD 96]: FρNN = 2.6, Kρ = 6.1 ± 0.2, FωNN = 20.86 ± 0.25, and
Kω = −0.16 ± 0.01, which compare well to the data, including the latest
experiments at Jefferson Lab. [Gay 03, Wu 03].

6.2 Masses and Widths of the Nucleon Resonances

I have used three different sets of masses and widths of the nucleon resonances
(Table 6.2): First, the PDG values [PDG 04]; second, the unitary multichan-
nel analysis of the processes πN → Nπ,Nη,Nππ,Nρ,Nσ,Nω performed
by Vrana, Dytman, and Lee [VDL 00] based upon the the Carnegie-Mellon-
Berkeley (CMB) model [CFHK 79]; and third, the speed plot (SP) calculation
that I explain below. For the partial decay widths I have two different sets,
one from PDG and one from Vrana et al., which lies within the PDG error
bars. The Vrana et al. set of partial decay widths has been chosen for the SP
calculation.

Masses and widths of nucleon resonances can be obtained from πN partial
wave analysis using the speed plot technique [Höh 98, TDHKY 01]. First I
define the speed by

SP (W ) = |dT (W ) /dW |, (6.4)

with W =
√
s and

T (W ) =
1

2i

[

e2iδ(W ) − 1
]

, (6.5)
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Fig. 6.2. Speed plot of the considered nucleon resonances. Data have been taken
from SAID database for πN scattering [SAID].
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Table 6.2. Masses, widths, and branching ratios from Refs. [PDG 04, VDL 00] and
from the speed plot calculation (see text). Masses and widths in MeV. I have taken
Γππ/Γ = 1−Γπ/Γ −Γη/Γ . Subscripts PDG, V DL and SP stand for Particle Data
Group [PDG 04], Vrana, Dytman, and Lee [VDL 00] and Speed Plot respectively.
PDG masses and widths are mean values.

∆(1232) N(1440) N(1520) N(1535) ∆(1620) N(1650) ∆(1700)

M∗

P 1210 1365 1510 1505 1607 1660 1660
M∗

V DL 1217 1383 1504 1525 1607 1663 1726
M∗

SP
1211 1372 1516 1540 1608 1664 1641

ΓPDG 100 210 115 170 115 160 200
ΓV DL 96 316 112 102 148 240 118
ΓSP 98 290 48 107 141 159 955

Γπ�ΓPDG 1.00 0.65 0.55 0.45 0.25 0.72 0.15
Γη�ΓPDG – 0.00 0.00 0.51 – 0.06 –
Γππ�ΓPDG 0.00 0.35 0.45 0.04 0.75 0.22 0.85

Γπ�ΓV DL 1.00 0.72 0.63 0.35 0.45 0.74 0.05
Γη�ΓV DL – 0.00 0.00 0.51 – 0.06 –
Γππ�ΓV DL 0.00 0.28 0.37 0.14 0.55 0.20 0.95

where T (W ) is the dimensionless resonance partial wave amplitude and δ (W )
its phase.

To calculate masses and widths I have taken phases from the current
solution of the SAID (Scattering Analysis Interactive Dial-in) πN partial
wave analysis [SAID]. In figure 6.2 I show SP (W ) for all the resonances
considered in this thesis. The position of the peak provides the pole mass,
and the height H provides the width: Γ = 2/H.

The baryon resonances show up clearly and the calculation is straightfor-
ward. The only problem is related to the existence of a background which
induces a phase shift in the πN phases. In the region of the peak this phase
shift can be considered approximately constant and its effect in SP (W ) is
negligible.

My fits to photoproduction data shown in the next chapter are clasified
according to six sets of parameters which are given in table 7.1. Sets #1 and
#4 are based on PDG values for masses and widths; set #2 and set #4 are
based on Vrana et al. [VDL 00]; and sets #3 and #6 are based on the SP
calculation.
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Fig. 6.3. Feynman diagram of the decay of a nucleon resonance into a pion [SAID].

The strong coupling constants (h’s) for the resonances are obtained using
the partial decay widths of the resonances into one pion. I obtain the decay
widths by calculating the Feynman diagram in Fig. 6.3 for each resonance
and applying equation (6.2):

Γ S11
π = 3

k∗h2

2πM∗f2
π

[

Eπ (EN +M) + k∗2
]2

2 (EN +M)
, (6.6)

Γ S31
π =

k∗h2

2πM∗f2
π

[

Eπ (EN +M) + k∗2
]2

2 (EN +M)
, (6.7)

ΓP11
π = 3

k∗3h2

2πM∗f2
π

(EN +M + Eπ)
2

2 (EN +M)
, (6.8)

ΓP33
π =

h2

3πf2
π

k∗3

M∗
(EN +M) , (6.9)

ΓD33
π =

h2

3πf2
π

k∗5

M∗

1

EN +M
, (6.10)

ΓD13
π =

h2

πf2
π

k∗5

M∗

1

EN +M
, (6.11)

where

k∗ =
1

2M∗

[

(

M∗2 −M2 −m2
π

)2 − 4m2
πM

2
]

1
2

, (6.12)

Eπ =
√

k∗2 +m2
π, (6.13)

EN =
√

k∗2 +M2, (6.14)

I choose all the strong coupling constants to be positive, thus the overall
sign of the amplitude of each resonance depends on the sign of the electro-
magnetic coupling constants.



7 Electromagnetic Coupling Constants of the
Nucleon Resonances

AT this point, only the electromagnetic coupling constants and the cutoff
Λ remain undetermined. The best way to establish them is by fitting

pion photoproduction experimental data. Among all the observables (cross
section, asymmetries, etc.) for pion photoproduction, the set of data I have
chosen is the one given by the current SAID multipole energy independent so-
lution [ABSW 02, ASW 96, AWLR 90a, SAID]. There are two main reasons
for this choice. First, electromagnetic multipoles are directly related to the
amplitudes and are more sensitive to coupling properties than are other ob-
servables. Deficiencies in the model show up much more clearly in multipoles
than in any other observable. Second, all the observables can be expressed
in terms of the multipoles, thus, if the multipoles are properly fitted by the
model, so should be the other observables.

It is lenghtly but straightforward to calculate the electromagnetic mul-
tipoles from the invariant amplitudes in chapter 4. The initial state of the
process is characterized by a photon with spin ~sγ (sγ = 1) and angular mo-

mentum ~̀ relative to the nucleon target which couples to a nucleon with spin
~JN (JN = 1/2) and parity ΠN = 1 in order to produce a spin ~J and parity
Π intermediate state. The multipole expansion of the photon field provides
electric (E) and magnetic (M) multipoles with parities Πγ = (−1)L and
Πγ = (−1)L+1 respectively. The following selection rules apply:

|Lγ − JN | = |Lγ − 1

2
| ≤ J ≤ |Lγ +

1

2
| = |Lγ + JN |, (7.1)

Π = ΠN ·Πγ = Πγ . (7.2)

The final state is composed by a nucleon and a pseudoscalar meson with
orbital angular momentum Lπ. Selection rules of the process are

|Lπ − JN | = |Lπ − 1

2
| ≤ J ≤ |Lπ +

1

2
| = |Lπ + JN |, (7.3)

Π = ΠN ·Ππ · (−1)Lπ = (−1)Lπ+1. (7.4)

Thus

Πγ = Π = (−1)Lπ+1, (7.5)
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Lγ ± 1

2
= J = Lπ ± 1

2
, (7.6)

where the ’+’ and the ’−’ are independent. There are two possibilities

Electric : L = Lπ ± 1, (7.7)

Magnetic : L = Lπ. (7.8)

The multipoles are denoted by E`± and M`±, where E and M stand for
electric and magnetic multipoles respectively, ` = Lπ is the relative orbital
angular momentum of the final meson-nucleon system, and the ’+’ and the
’−’ indicate whether the nucleon spin must be added or substracted.

To calculate the electromagnetic multipoles I first need to define nucleon
helicity spinors in the center of mass reference system. In momentum space,
I normalise the spinors using the conventions of Ref. [HM 84]:

ūr (p)us (p) = 2Mδrs, (7.9)
∑

s

us(p)ūs(p) = /p+M, (7.10)

where p is the nucleon four momentum, M the mass of the nucleon, and s
and r stand for the spin third component. Under this normalisation, the free
Dirac equation solution is:

u (p) =
√
E +M

[

I
~τ ·~p

E+M

]

χ. (7.11)

Helicity eigenstates are built to fulfill the following relations:

~τ · ~p
|~p| χinitial = ±χinitial, (7.12)

for the initial spinor, and

~τ · ~p ′

|~p ′| χfinal = ±χfinal, (7.13)

for the final spinor. In the center of mass reference system, with helicity
defined along the incoming photon, the spinors are

u(p)λ= 1
2 =

√
ρ









0
1
0
ζ









, (7.14)

u(p)λ=− 1
2 =

√
ρ









1
0
−ζ
0









; (7.15)
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for the incoming nucleon and

ū(p′)λ= 1
2 =

√

ρ′
[

− sin θ
2 , cos

θ
2 , ζ

′ sin θ
2 , −ζ ′ cos θ

2

]

, (7.16)

ū(p′)λ=− 1
2 =

√

ρ′
[

cos θ
2 , sin

θ
2 , ζ

′ cos θ
2 , ζ

′ sin θ
2

]

; (7.17)

for the outgoing nucleon. Where

ρ = E∗ +M, (7.18)

ρ′ = E′∗ +M, (7.19)

ζ =
p∗

ρ
, (7.20)

ζ ′ =
p′∗

ρ′
. (7.21)

I can now define the helicity amplitudes. Because of parity, among the
eight helicity amplitudes, only four of them are independent:

HN ≡ A 1
2 , 1

2
≡ A 1

2 ,− 1
2 ,1 =−A− 1

2 ,− 1
2

=−A− 1
2 , 1

2 ,−1, (7.22)

HSF ≡ A 3
2 , 1

2
≡A− 1

2 ,− 1
2 ,1 = A− 3

2 ,− 1
2

= A 1
2 , 1

2 ,−1, (7.23)

HSA ≡A 1
2 ,− 1

2
≡ A 1

2 , 1
2 ,1 = A− 1

2 , 1
2

= A− 1
2 ,− 1

2−1, (7.24)

HD ≡A 3
2 ,− 1

2
≡ A− 1

2 , 1
2 ,1 = −A− 3

2 , 1
2

=−A 1
2 ,− 1

2 ,−1. (7.25)

Subindices stand for: N , non-spin flip; SF , spin flip with photon and initial
nucleon having parallel spins; SA, spin flip with photon and initial nucleon
having antiparallel spins; and D, double spin flip. In terms of these four
independent helicity amplitudes (see chapter 2 for Aλ1,λ2,λγ

definition), it is
possible to write all the physical observables [AWLR 90a].

On the other hand, the pion photoproduction differential cross section
can be written:

dσ

dΩ
=

∑

λµ

|fλµ (θ, k) |2, (7.26)

where λ = λγ − λ1 and µ = −λ2. fλµ and Aλµ are related by means of

fλµ =
1

16π

√

k∗

s∗E∗
γ

Aλµ, (7.27)

which relates equation (7.26) with Eq. (2.12) in chapter 2.
If I project f(θ, k) using the Wigner d-function basis

f j
λµ(k) =

1

2

∫ 1

−1

d(cos θ)dj
λµ(θ)fλµ(θ, k), (7.28)

in this expansion
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fλµ(θ, k) =
∑

j

(2j + 1)dj
λµ(θ)f j

λµ (k) . (7.29)

If I integrate Eq. (7.26) I obtain the optical theorem result:

σ = 4π
∑

λµ

∑

j

(2j + 1) |f j
λµ (k) |2. (7.30)

Wigner d-functions are related to the matrix elements of finite rotations
and are used in the calculation of electromagnetic multipoles and helicity
amplitudes. The matrix element of a finite rotation can be written

Dj
λµ ≡ 〈jλ|D (αθγ) |jµ〉. (7.31)

I define

D (αθγ) = eiγJzeiθJyeiαJz , (7.32)

where α, θ, and γ are the Euler angles.

Given a representation where matrices Jz are diagonal, it holds:

Dj
λµ (αθγ) = eiλγdj

λµ (θ) eiµα, (7.33)

where the Wigner d-functions dj
m′m (θ) are given by:

dj
λµ (θ) = 〈jλ|eiθJy |jµ〉. (7.34)

Details on the calculation of d-functions and their relation to Jacobi and
Legendre polynomials can be found in Ref. [Edm 74]. From a practical point
of view my interest in d-functions is restricted to use them as an eigenfunc-
tion basis to project and perform partial wave expansions of amplitudes.

Wigner d-functions verify the following normalisation relation

∫ 1

−1

d (cos θ) dj
λµ (θ) dj′

λ′µ′ (θ) =
2

2j + 1
δjj′δλλ′δµ′µ, (7.35)

and the symmetry relations:

dj
λ,µ (θ) = (−1)

µ−λ
dj

µ,λ (θ) = dj
−µ,−λ (θ) . (7.36)

I need the explicit expresion up to a certain j. The Wigner d-functions needed
in this thesis are

d1
0,0 (θ) = cos θ, (7.37)

d
1/2
1/2,1/2 (θ) = cos

θ

2
, (7.38)

d
1/2
1/2,−1/2 (θ) = − sin

θ

2
, (7.39)
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d1
1,1 (θ) =

1 + cos θ

2
, (7.40)

d1
1,0 (θ) = − sin θ√

2
, (7.41)

d1
1,−1 (θ) =

1 − cos θ

2
, (7.42)

d
3/2
3/2,3/2 (θ) =

1 + cos θ

2
cos

θ

2
, (7.43)

d
3/2
3/2,1/2 (θ) = −

√
3
1 + cos θ

2
sin

θ

2
, (7.44)

d
3/2
3/2,−1/2 (θ) =

√
3
1 − cos θ

2
cos

θ

2
, (7.45)

d
3/2
3/2,−3/2 (θ) = −1 − cos θ

2
sin

θ

2
, (7.46)

d
3/2
1/2,1/2 (θ) =

3 cos θ − 1

2
cos

θ

2
, (7.47)

d
3/2
1/2,−1/2 (θ) = −3 cos θ + 1

2
sin

θ

2
. (7.48)

If more d-functions are necesary the following recurrence relations can be
employed:

– if j = µ

dj
λj (θ) = (−1)

j−λ

[

(2j)!

(j + λ)! (j − λ)!

] (

cos
θ

2

)j+λ (

sin
θ

2

)j−λ

. (7.49)

– if j 6= µ

dj
λµ (θ) =

(

j − µ

j − λ

)
1
2

d
j−1/2
µ+1/2,λ+1/2 (θ) cos

θ

2

−
(

j + µ

j − λ

)
1
2

d
j−1/2
µ−1/2,λ+1/2 (θ) sin

θ

2
.

(7.50)

The amplitudes are expanded in partial waves depending on the angular
momentum, the parity, and their electric or magnetic character. The helicity
amplitudes are related to the multipoles by means of:

HN =
∞
∑

`=0

1√
2

cos
θ

2

(

P ′
`+1 − P ′

`

)

×
[

(`+ 2)
(

E`+ −M(`+1)−

)

+ `
(

M`+ + E(`+1)−

)]

= −
∞
∑

`=0

(`+ 1)√
2

dj
1
2

1
2

(θ)

×
[

(`+ 2)
(

E`+ −M(`+1)−

)

+ `
(

M`+ + E(`+1)−

)]

,

(7.51)
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HSF =

∞
∑

`=0

1√
2

sin θ cos
θ

2

(

P ′′
`+1 − P ′′

`

)

×
[

E`+ −M`+ − E(`+1)− −M(`+1)−

]

=

∞
∑

`=0

(`+ 1)√
2

[` (`+ 2)]
1
2 dj

3
2

1
2

(θ)

×
[

E`+ −M`+ − E(`+1)− −M(`+1)−

]

,

(7.52)

HSA =

∞
∑

`=0

1√
2

sin
θ

2

(

P ′
`+1 + P ′

`

)

×
[

(`+ 2)
(

E`+ +M(`+1)−

)

+ `
(

M`+ − E(`+1)−

)]

= −
∞
∑

`=0

(`+ 1)√
2

dj
1
2−

1
2

(θ)

×
[

(`+ 2)
(

E`+ +M(`+1)−

)

+ `
(

M`+ − E(`+1)−

)]

,

(7.53)

HD =
∞
∑

`=0

1√
2

sin θ sin
θ

2

(

P ′′
`+1 + P ′′

`

)

×
[

E`+ −M`+ + E(`+1)− +M(`+1)−

]

=

∞
∑

`=0

(`+ 1)√
2

[` (`+ 2)]
1
2 dj

3
2−

1
2

(θ)

×
[

E`+ −M`+ + E(`+1)− +M(`+1)−

]

,

(7.54)

where the following relations have been applied:

sin θ cos
θ

2

(

P ′′
`+1 − P ′′

`

)

= − (`+ 1) [` (`+ 2)]
1
2 dj

3
2

1
2

(θ) , (7.55)

cos
θ

2

(

P ′
`+1 − P ′

`

)

= (`+ 1) dj
1
2

1
2

(θ) , (7.56)

sin θ sin
θ

2

(

P ′′
`+1 + P ′′

`

)

= (`+ 1) [` (`+ 2)]
1
2 dj

3
2−

1
2

(θ) , (7.57)

sin
θ

2

(

P ′
`+1 + P ′

`

)

= − (`+ 1) dj
1
2−

1
2

(θ) , (7.58)

where:

P ′
` =

d

d (cos θ)
P`. (7.59)

If I project using d-functions, I can eliminate the angular dependence:
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H`
N = − 1√

2

[

(`+ 2)
(

E`+ −M(`+1)−

)

+ `
(

M`+ + E(`+1)−

)]

, (7.60)

H`
SF =

1√
2

[` (`+ 2)]
1
2

[

E`+ −M`+ − E(`+1)− −M(`+1)−

]

, (7.61)

H`
SA = − 1√

2

[

(`+ 2)
(

E`+ +M(`+1)−

)

+ `
(

M`+ − E(`+1)−

)]

, (7.62)

H`
D =

1√
2

[` (`+ 2)]
1
2

[

E`+ −M`+ + E(`+1)− +M(`+1)−

]

. (7.63)

Defining the helicity amplitudes:

A`+ = −
√

2

4

(

H`
N +H`

SA

)

=
1

2
[(`+ 2)E`+ + `M`+] , (7.64)

A(`+1)− =

√
2

4

(

H`
N −H`

SA

)

=
1

2

[

(`+ 2)M(`+1)− − `E(`+1)−

]

, (7.65)

B`+ =

√
2

2
[` (`+ 2)]

− 1
2

(

H`
SF +H`

D

)

= E`+ −M`+, (7.66)

B(`+1)− =

√
2

2
[` (`+ 2)]

− 1
2

(

H`
SF −H`

D

)

= E(`+1)− −M(`+1)−. (7.67)

The multipoles are

E`+ =
1

`+ 1

[

A`+ +
`

2
B`+

]

, (7.68)

M`+ =
1

`+ 1

[

A`+ − `+ 2

2
B`+

]

, (7.69)

E(`+1)− = − 1

`+ 1

[

A(`+1)− − `+ 2

2
B(`+1)−

]

, (7.70)

M(`+1)− =
1

`+ 1

[

A(`+1)− +
`

2
B(`+1)−

]

. (7.71)

In this thesis I only need the lowest order multipoles. I define:

HI,j
λµ (W ) =

1

8Wπ

∫ 1

−1

d (cos θ) dj
λµ (θ)AI

λµ (θ,W ) , (7.72)

where j is the amplitude spin, and W =
√
s∗. AI

λµ (θ,W ) are the invari-

ant amplitudes in the isospin basis
(

A3/2,pA
1/2,nA

1/2
)

which relates to the
(

A0, A+, A−
)

basis of chapter 2 through

A3/2 = A+ −A−, (7.73)

pA
1/2 =

1

3
A+ +

2

3
A− +A0, (7.74)

nA
1/2 = −1

3
A+ − 2

3
A− +A0. (7.75)

Under this decomposition Eq. (2.17) becomes:
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M = χ†
2

(

T +
j pA

1/2 + T −
j nA

1/2 + T 3/2
j A3/2

)

πjχ1, (7.76)

where

T +
j =

1

2
τj (1 + τ3) , (7.77)

T −
j =

1

2
τj (1 − τ3) , (7.78)

T 3/2
j = δj3 −

1

3
τjτ3; (7.79)

and the physical amplitudes are:

A
(

γp→ pπ0
)

= pA
1/2 +

2

3
A3/2, (7.80)

A
(

γn→ nπ0
)

= −nA
1/2 +

2

3
A3/2, (7.81)

A
(

γn→ pπ−
)

=
√

2

(

nA
1/2 +

1

3
A3/2

)

, (7.82)

A
(

γp→ nπ+
)

=
√

2

(

pA
1/2 − 1

3
A3/2

)

. (7.83)

The lowest order multipoles are [AWLR 90a, BDW 67, CGLN 57, Wal 69]:

EI
0+ =

√
2

4

[

H
I,1/2
1/2,1/2 +H

I,1/2
1/2,−1/2

]

, (7.84)

M I
1− = −

√
2

4

[

H
I,1/2
1/2,1/2 −H

I,1/2
1/2,−1/2

]

, (7.85)

EI
1+ =

√
2

8

[(

H
I,3/2
1/2,1/2 +H

I,3/2
1/2,−1/2

)

− 1√
3

(

H
I,3/2
3/2,1/2 +H

I,3/2
3/2,−1/2

)

]

,

(7.86)

M I
1+ =

√
2

8

[(

H
I,3/2
1/2,1/2 +H

I,3/2
1/2,−1/2

)

+
√

3
(

H
I,3/2
3/2,1/2 +H

I,3/2
3/2,−1/2

)]

,

(7.87)

EI
2− =

√
2

8

[(

H
I,3/2
1/2,1/2 −H

I,3/2
1/2,−1/2

)

+
√

3
(

H
I,3/2
3/2,1/2 −H

I,3/2
3/2,−1/2

)]

,

(7.88)
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M I
2− = −

√
2

8

[(

H
I,3/2
1/2,1/2 −H

I,3/2
1/2,−1/2

)

− 1√
3

(

H
I,3/2
3/2,1/2 −H

I,3/2
3/2,−1/2

)

]

.

(7.89)

Another issue to take into account is unitarity. Models below the two
pion production threshold fulfill Watson’s theorem to achieve unitarity using
either πN scattering phases [DHKT 99], dynamical models [FA 03, NBL 90,
SL 96, SL 01, PT 04] or K matrix [DMW 91]. Beyond the two pion pro-
duction limit, implementation of unitarity is unclear and usually relies on
experimental data and/or extensions of the methods applied below the two
pion threshold.

I would like to note that, although my calculation seems to be at tree-level,
it is not quite so due to the inclusion of the width and the form factors, which
effectively take into account higher order diagrams and structure effects. If
I perform a truly tree-level calculation – straightforwardly from amplitudes
of chapter 4 – I would find out that all the amplitudes are real and that it
would be impossible to fulfill the unitarity condition SS† = 1, where S is the
scattering matrix. In an effective Lagrangian perturbative model, unitarity
should be restored by the inclusion of higher order diagrams. In this thesis,
however, I adopt a phenomenological point of view. The main higher order
effects can be taken into account including a width in the propagator, (which
amounts to dress the propagator), and including effectively final state interac-
tions (FSI) as I describe in chapter 3.5. Once the width is included, unitarity
restoration may be achieved through FSI. I can assume that it is possible to
isolate the FSI effects by factorizing the multipoles M in the following way:

MI,`,Π = |MI,`,Π |eδwidthF I,`,Π , (7.90)

where F I,`,Π is a phase factor that takes into account FSI, and ` stands for
orbital angular momentum, Π for parity, and I for isospin:

F I,`,Π = eiδI,`,Π
F SI . (7.91)

Then, the absolute value of the multipoles must be well reproduced by
the model and only the phases of the multipoles remain unknown. I am
interested in the bare values of the coupling constants, so the best choice is
to use directly the experimental phases. Hence, the multipole phase can be
written as:

δI,`,Π = δwidth + δI,`,Π
FSI , (7.92)

where I call δwidth to the phase given by the calculated amplitudes. Com-
parison with experimental phase shifts (δI,`,Π) provides me with the un-

known final state interaction phase shifts δI,`,Π
FSI . Phases δI,`,Π are taken
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Table 7.1. Specifications of the parameter sets. Masses, widths, and Λ are in GeV.
The coupling constants for the vector mesons are dimensionless. I provide also the
χ2/χ2

PDG in order to compare fits.

Set #1 #2 #3 #4 #5 #6

Masses & Widths PDG Vrana SP PDG Vrana SP
δFSI Yes Yes Yes No No No
χ2/χ2

PDG 1 0.53 0.60 9.30 5.57 4.56

Λ 1.121 1.050 1.040 1.494 0.951 0.962

Kρ 6.30 6.30 6.30 6.30 5.90 5.90
FωNN 21.11 21.11 21.11 20.61 21.11 21.11
Kω -0.17 -0.17 -0.17 -0.15 -0.17 -0.17

M∗ [∆(1232)] 1.209 1.215 1.209 1.210 1.215 1.209
Γ [∆(1232)] 0.102 0.098 0.100 0.102 0.094 0.099

M∗ [N(1440)] 1.385 1.381 1.370 1.385 1.381 1.370
Γ [N(1440)] 0.160 0.318 0.292 0.260 0.314 0.288

M∗ [N(1520)] 1.505 1.502 1.514 1.505 1.502 1.514
Γ [N(1520)] 0.110 0.110 0.050 0.110 0.110 0.050

M∗ [N(1535)] 1.495 1.527 1.542 1.495 1.523 1.538
Γ [N(1535)] 0.250 0.104 0.109 0.099 0.100 0.109

M∗ [∆(1620)] 1.590 1.605 1.606 1.620 1.605 1.606
Γ [∆(1620)] 0.100 0.150 0.143 0.100 0.150 0.143

M∗ [N(1650)] 1.680 1.665 1.666 1.640 1.665 1.666
Γ [N(1650)] 0.150 0.238 0.157 0.150 0.242 0.157

M∗ [∆(1700)] 1.620 1.728 1.639 1.620 1.728 1.639
Γ [∆(1700)] 0.250 0.120 0.957 0.250 0.120 0.957

from the current energy dependent multipole solution of SAID analysis
[AWLR 90a, ASW 96, ABSW 02, SAID]. For each set of masses and widths,
I obtain two types of fits, one with and one without SAID phases.

In order to fit the data and determine the best parameters of the reso-
nances I have written a genetic algorithm combined with the E04FCF routine
from NAG libraries [NAG]. Although genetic algorithms are computationally
more expensive (in terms of computational effort) than other algorithms, it is
much less likely for them to get stuck at local minima than for other methods,
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Table 7.2. Coupling constants of the resonances. The E2/M1 Ratio (EMR) of
∆(1232) is also given. All magnitudes are dimensionless.

#1 #2 #3 #4 #5 #6

∆(1232) P33 h 0.764 0.721 0.757 0.759 0.706 0.753
g1 6.061 5.574 5.630 6.254 5.382 4.984
g2 2.414 1.187 1.123 4.032 7.253 7.696
G∆

E -0.152 -0.076 -0.071 -0.255 -0.466 -0.485
G∆

M 6.213 5.650 5.701 6.509 5.848 5.469
EMR -2.45% -1.35% -1.24% -3.92% -7.97% -8.87%

N(1440) P11 h 0.213 0.304 0.303 0.272 0.302 0.300
gp 0.255 -0.269 -0.247 0.255 -0.164 0.017
gn -0.125 0.273 0.234 -0.125 0.096 -0.128

N(1520) D13 h 0.560 0.567 0.366 0.560 0.567 0.360
gp
1 -5.753 -4.848 -5.607 -5.498 -0.580 -2.348

gn
1 1.217 2.829 1.982 0.301 -1.503 0.105

gp
2 -0.861 -0.645 -0.520 -0.920 -0.986 -0.691

gn
2 1.462 0.960 0.979 1.674 2.731 2.174

N(1535) S11 h 0.132 0.079 0.078 0.083 0.078 0.079
gp 0.219 0.078 0.028 0.435 0.230 0.084
gn -0.102 -0.127 -0.080 -0.164 -0.195 -0.129

∆(1620) S31 h 0.133 0.159 0.155 0.126 0.159 0.155
g -0.154 -0.324 -0.308 -0.063 0.008 0.044

N(1650) S11 h 0.102 0.132 0.107 0.110 0.134 0.107
gp 0.113 -0.167 0.025 0.117 0.074 0.127
gn 0.018 0.411 0.324 0.019 0.281 0.056

∆(1700) D33 h 0.285 0.149 0.528 0.285 0.149 0.528
g1 -3.513 0.663 -11.875 -3.996 -19.642 -26.531
g2 1.871 0.548 -2.392 2.000 3.701 7.293

namely gradient based minimisation. Thus, in a multiparameter minimisa-
tion like the one I face here it is probably the best possibility to search for
the minimum. A detailed explanation on the genetic algorithm used to assess
the parameters can be found in chapter 8.

The function to minimise is the χ2 defined as
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χ2 =
∑

j

(

Mexp
j −Mth

j

)2

(

∆Mexp
j

)2 , (7.93)

where Mexp stands for the current energy independent extraction of the
multipole analysis of SAID up to 1 GeV for E0+, M1−, E1+, M1+, E2−, and
M2− multipoles in the three isospin channels I = 3

2 , p, n for the γp → π0p
process. ∆Mexp is the error and Mth is the multipole given by the model
which depends on the parameters. These parameters are the cutoff Λ and
the electromagnetic coupling constants in Table 7.2, which are related to
the helicity amplitudes AI

λ of the resonances in Table 7.3. The connection
between my amplitudes and the helicity amplitudes of the resonances as they
are found in Ref. [PDG 04] is straightforward. This connection is necessary
in order to relate the coupling constants to the usual partial wave analyses.
To perform this connection the isospin decomposition

(

A∆, Ap, An
)

is needed
instead of the one in chapter 2. Both are related in the following way:

A∆ =

√

2

3

(

A+ −A−
)

, (7.94)

Ap = − 1√
3

(

A+ + 2A− + 3A0
)

, (7.95)

An =
1√
3

(

A+ + 2A− − 3A0
)

. (7.96)

And the helicity amplitudes are given by [AWLR 90b, GM 93]

AI
λd

j
λµ (θ) =

i

8π (2j + 1)

√

(2j + 1)
2π

s∗
k∗

q∗
M∗

M

Γ 2

Γπ
AI

λ1λ2λγ
, (7.97)

where λ, µ, j, and dj
λµ (θ) have the same meaning as in the electromagnetic

multipoles calculation; Γ is the total decay width and Γπ the pion-nucleon
decay width of the resonance as defined in chapter 6.2. k∗ and q∗ are the
pion and the photon momenta in the c.m. system. I define the kinematical
coefficients:

q∗ =
M∗2 −M2

2M∗
, (7.98)

ξ =
q∗

√

q∗2 +M2 +M
, (7.99)

T =
1

4

M∗

M (M +M∗)

q∗√
Mξ

, (7.100)

to obtain finally the following results:

Resonance S11

Ap,n
1/2 (S11) =

1√
2

egp,n

M

√

ξ

M
(M +M∗) . (7.101)
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Table 7.3. Helicity amplitudes in GeV−1/2 for the different sets.

#1 #2 #3 #4 #5 #6

∆(1232) P33 A∆
1/2 -0.129 -0.123 -0.123 -0.129 -0.101 -0.090

A∆
3/2 -0.247 -0.225 -0.224 -0.263 -0.248 -0.231

N(1440) P11 Ap
1/2

-0.061 0.064 0.058 -0.061 0.039 -0.004

An
1/2 0.030 -0.065 -0.055 0.030 -0.023 0.030

N(1520) D13 Ap
1/2

-0.020 -0.020 -0.034 -0.015 0.027 0.006

An
1/2 -0.050 -0.013 -0.022 -0.068 -0.121 -0.092

Ap
3/2

0.161 0.129 0.136 0.161 0.095 0.092

An
3/2 -0.128 -0.118 -0.107 -0.128 -0.190 -0.163

N(1535) S11 Ap
1/2

0.060 0.022 0.008 0.119 0.065 0.024

An
1/2 -0.028 -0.036 -0.023 -0.045 -0.055 -0.037

∆(1620) S31 A∆
1/2 0.038 0.081 0.077 0.016 -0.002 -0.011

N(1650) S11 Ap
1/2

0.037 -0.054 0.008 0.037 0.024 0.041

An
1/2 0.006 0.133 0.105 0.006 0.091 0.018

∆(1700) D33 A∆
1/2 0.109 0.015 0.222 0.119 0.406 0.573

A∆
3/2 0.063 0.055 0.057 0.063 -0.156 0.006

Resonance S31

A∆
1/2 (S31) = − 1√

3

eg

M

√

ξ

M
(M +M∗) . (7.102)

Resonance P11

Ap,n
1/2 (P11) = − 1√

2

egp,n

M

√

ξ

M
(M +M∗) . (7.103)

Resonance P33

A∆
1/2 (P33) = −eT

√

1

2
[g1 − ξg2] , (7.104)

A∆
3/2 (P33) = −eT

√

3

2
[g1 + ξg2] . (7.105)
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Resonance D33

A∆
1/2 (D33) = eT

√
2

2
[g2 − ξg1] , (7.106)

A∆
3/2 (D33) = eT

√

3

2
[g2 + ξg1] . (7.107)

Resonance D13

Ap,n
1/2 (D13) = −eT 3

2
√

3
[gp,n

2 − ξgp,n
1 ] , (7.108)

Ap,n
3/2 (D13) = −eT 3

2
[gp,n

2 + ξgp,n
1 ] . (7.109)

The minimisation procedure applied is the one presented in Fig. 7.1: First
the genetic algorithm has been run and when the convergence conditions were
accomplished, the E04FCF routine was used for fine tunning. I use the genetic
algorithm solution as the initial value for the E04FCF routine from NAG
libraries [NAG]. This E04FCF routine implements an algorithm that allows to
find an unconstrained minimum of a sum of squares:

Minimise F (x1 . . . xn) =
m

∑

j=1

|fj (x1 . . . xn) |2, (7.110)

of m nonlinear functions in n variables (m ≥ n). This algorithm does not

require to know derivatives. From a starting point x
(1)
1 . . . x

(1)
n (in my case

supplied by the genetic algorithm) the routine applies Newton method in
order to reach the minimum. The Newton method uses a finite-difference
approximation to the Hessian matrix to define the search direction.

It is a very accurate and fast converging algorithm once I have an initial
solution close to the minimum I seek. Thus it is perfect for my fine tunning
purpose. If I try to solve the optimisation problem by means of the E04FCF

routine alone it shows completely useless and no reliable results are obtained
because it gets stuck in the first local minimum found [IJR 04].

The code has been run many times with different seeds in order to ensure
that the minimum was not local. I have taken into account 763 data for the
real part of the multipoles and the same amount for the imaginary part.
Thus, 1526 data points have been used in the fits.

In Tables 7.1, 7.2, and 7.3 I show results for the six different sets and
provide the reader with all the parameters of the model. Table 7.1 shows
masses and widths, the cutoff Λ, as well as the vector-meson parameters Kρ,
FωNN , and Kω, for each set. Table 7.2 provides all the coupling constants
of the resonances as well as the the E2/M1 Ratio (EMR) of the ∆(1232)
resonance. Table 7.3 contains the helicity amplitudes of the resonances which
can be compared to those in other references such as [DMW 91, FM 97,
GM 93, PDG 04].
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Fig. 7.1. Minimisation scheme applied to assess the values of the resonance parameters.





8 Genetic Algorithms

Britannica Encyclopædia [Britannica] provides the following definition for
evolution:

“theory in biology postulating that the various types of plants, an-
imals, and other living things on Earth have their origin in other
preexisting types and that the distinguishable differences are due to
modifications in successive generations.”

Following this definition it is possible to think about evolution in a simpli-
fied way and implement a mathematical model for it. I can consider evolution
as an optimisation scheme where the different species evolve to optimal adap-
tation to the surrounding environment. Thus, evolution is an “algorithm”
that searchs for best solutions creating a set of individuals (a generation), it
decides which individuals are the best fit ones, and, by means of crossover,
keeps the good genetic characteristics for the next generation – that will be
closer to the optimal solution – and removes the individuals with less fit.
Thus, Nature provides an optimisation scheme that has been used as the
basis of genetic algorithms (GAs). During the last years these algorithms
have been exploited to solve optimisation problems in different fields such
as physics, chemistry, biology, engineering, and economy. In an optimisation
problem the function to minimise plays the role of environment in Nature, a
set of parameters to play the role of an individual, and a set of individuals
that plays the role of a generation.

There are three different kinds of optimization strategies [Gol 89]:

1. Calculus-based methods, divided in two types.
a) Indirect: I solve the equations obtained from setting the gradient

to zero. This technique requires the function to be minimised to be
smooth and requires the knowledge of the first derivatives.

b) Direct: This method is based upon the hillclimbing idea. I climb the
function in the steepest direction until I find a local optima. The
E04FCF routine from NAG libraries I use for fine tunning is based
upon this method.

These methods are local and the hillclimbing strategy depends heavily on
the initial point chosen to start climbing. They also require smoothness
of the objective function and quite often also the existence of derivatives.
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These methods are excellent in academic problems, but not in many
practical ones as the one I face in this thesis.

2. Enumerative. In this case, every point in a discretization version of the
parameter space is explored. If the search space is very small this method
is succesful, but if not, the algorithm is useless because of efficiency and
time.

3. Stochastic. There are several kinds of stochastic search methods and
among them are GAs. In these methods, a certain randomness is intrinsic
to the search. However, this does not mean that the search is direction-
less. For example, in GAs, the evaluation function and criteria to build
up the generations provide strong guidance to the algorithm.

Fig. 8.1. Plot of a function which has so many local optima that a hillclimbing
method to search for global optimum is useless.

In order to understand how a GA works compared to other methods it
is useful the following example. Imagine that you want to know which one is
the highest mountain in Himalaya. Hillclimbing methods are like dropping a
climbing-loving kangaroo in the middle of Himalaya. As soon as you leave it,
it starts climbing, so it is going to reach quickly the top of a certain peak, but
nothing guarantees that the peak is Mount Everest. A GA works in a quite
different way. It is like parachuting a lot of kangaroos into the Himalayas at
random places. The kangaroos do not know what they are doing, they just
wander in the area, mix with other kangaroos, and make more kangaroos.
But every certain years I retire the kangaroos living at low altitudes and
I hope the ones at higher altitudes will multiply. After several generations
of kangaroos, only the best adapted to the highest altitude will remain in
Himalaya, and at the very end only the ones on the top of Mount Everest
(also perhaps the ones on the top of Mount K2) will stay [Mic 99].
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From this example it stems clearly why a hillclimbing method would fail
to find the optimum in a function like the one in Fig. 8.1 and a GA might have
high chances of success. The main properties of GAs compared to hillclimbing
methods are [Gol 89]:

– GAs do not work directly with the parameters. They work with a codifi-
cation (an encoding scheme) of the parameters (the chromosome).

– Whereas most methods employ a single solution which evolves to reach
the local optimum, GAs work on a population of many possible solutions
simultaneously.

– GAs only need the objective function to determine how fit an individual
is. Neither derivatives nor other auxiliary knowledge are required.

– GAs use probabilistic rules to evolve.

Instead of describing how GAs work from a general point of view I prefer
to describe how the GA used in this thesis works and use it as a paradigm
[Udi 03a, Udi 03b]. The code follows the scheme in Fig. 8.2.

1. I provide the first generation consisting of individuals randomly generated
with reasonable values of the parameters.

2. The individuals are ordered according to the “fitness” function, in my case
the χ2 value. This is called “scaling of the population” and determines
the probability that an individual has to mate and survive. I provide a
0.8 probability to the worst individual and 1.0 to the best. In order to
keep genetic diversity it is good to avoid the best and the worst indi-
viduals having too different surviving probability. If I do not care about
genetic diversity, the appearance of a very fit individual would make the
forthcoming offsprings to collapse to that individual characteristics, with
a loss of the good optimisation properties of GAs. Another important
technique to maintain diversity is “mutation”, which is discussed in a
forthcoming paragraph.

3. After scaling, individuals are classified in two sets:
a) A set consisting of a quarter of individuals, the top best quartile, that

will be kept for the next generation.
b) The remaining three quarters of the population.

4. I generate the offsprings in the following way:
– 25% of the individuals are taken from the most fit ones of the previous

generation
– Another 25% is selected through fight among all the individuals (tour-

nament). The fight depends on probability, and in the least favourable
case the winning probability of an individual is 15%. Winning prob-
abilities are computed accordingly to the fitness of each contender.

– Another 25% is obtained by means of half-elitist crossover. It means
that I mate an individual from the best 25% of the previous generation
with an individual which was in the remaining 75%. Both individuals
are selected randomly.
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Fig. 8.2. Scheme of the genetic algorithm.
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Fig. 8.3. Schemes of the crossovers used in the genetic algorithm to generate the
offspring. In the upper figure I present the “normal” crossing, where parents are
split in two parts and the first part from one parent is combined with the second
from the other to generate the offspring. In the lower figure the “luxury” crossing is
shown. The offspring is weighed average of both individuals with a weight r · 100%
from one parent and a weight (1 − r) · 100% from the other, being r a random
number within 0 and 1.
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Fig. 8.4. Schemes of the mutations used in the genetic algorithm. The upper figure
(permutation mutation) shows the exchange of two genes randomly selected. The
lower figure (shift mutation) represents a small change in a gene.
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– The remaining 25% of the offsprings is generated mating individuals
selected randomly without restrictions.

In Fig. 8.3 I show the two different kinds of crossover I apply. For the
“normal crossing” I select randomly a crosover point for the parents. I
split each chromosome of the parents in two pieces. I take the second piece
of the second parent and I attatch it to the first piece of the first parent.
In this way I obtain an individual that is a mixture of the original ones.
The second kind of crossover is the one I call “luxury crossover”. I choose
randomly a number r between 0 and 1, and the offspring is calculated
weighting the parents with this probability. Half of the crossovers done
are “normal” and the other half are “luxury”. The kind of crossover to
apply is selected randomly.

5. I evaluate the new population in order to obtain the best fit individual.
This individual is called the “champion” and will be stored. Among the
rest of the population I select individuals to mutate. Fig. 8.4 shows two
types of mutation I have applied. The “permutation mutation” exchanges
two genes selected randomly. The “shift mutation” changes the value of a
gene in a small quantity. The amount of change is random within a range.
Often, the crossover operator and selection method are too effective and
they end up driving the genetic algorithm towards a population of indi-
viduals that are almost exactly the same. When the population consists
of similar individuals the likelihood of finding new solutions typically de-
creases. The mutation operator introduces an amount of randomness to
the search. It can help the search to keep diversity and to find solutions
that crossover alone might not discover.

6. Finally, I have built up the new generation. If I have not reached the
limit of generations, I run the algorithm again with the offspring as initial
population. For the last computed generation, I choose the best individual
as solution. If enough generations have been run, most of the individuals
will have close values.

I have run the algorithm thirty times. In Fig. 8.5 I provide a sample of how
the the process of optimum search evolves (set #2 calculation). The upper
figure shows the evolution of each time the algorithm has been run. In spite
of the fact that the convergence is accomplished quickly I decided to keep the
algorithm running in order let mutation find other possible minima and to
ensure that the absolute minimum was reached. When a jump in the χ2/χ2

min

happens it is due to the appearance of a very good new individual due to
either crossover of good individuals or to mutation. Each minimisation takes
the algorithm 3.3 hours to calculate the minimum in a machine equivalent
to a Pentium at 4 GHz. In the lower panel, the effect of NAG routine is
appreciated. It is also shown how alike are the different minima obtained in
each evaluation.
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Part III

Results





9 Analysis of the Electromagnetic Multipoles

AS has been previously explained, in order to determine the parameters of
the resonances and the cutoff value I have used data for electromagnetic

multipoles. In this section I discuss the results obtained for multipoles as well
as the quality of the different fits.

9.1 Electromagnetic Multipoles

Effective Lagrangian models, like the one presented here, are more compli-
cated than Breit-Wigner models such as MAID [DHKT 99]. The latter are
simple and describe accurately experimental observables, but do not provide
much information about properties of the resonances such as the strength of
the couplings. Breit-Wigner treatment of resonances can be considered naive
because each resonance contributes only to the multipole with its same an-
gular momentum quantum number and thus there is no background from
resonances, what is very different from Lagrangian models where, for a given
resonance, the direct term contributes only to a single spin-isospin chan-
nel, while the crossed term contributes to different spin-isospin channels as
background, and then one resonance does indeed affect to the determination
of the parameters of other resonances. Contributions from crossed terms to
the background cannot be neglected and there are resonant contributions to
several multipoles. For instance, N(1520) contributes to Ep,n

2− and Mp,n
2− , as

expected for a D13 isobar, but on the other hand, it also contributes strongly
to Mp

1+. The background of Breit-Wigner models is much simpler because it
only has contributions from Born terms and vector mesons (ρ and ω).

Figures 9.1, 9.2, and 9.3 show the comparison of the six different sets of
Table 7.1 to experimental data from SAID database [SAID]. Without FSI

at low energies, I get nice fits to some of the multipoles: M
3/2
1+ , E

3/2
2− , and

Ep
2−. With increasing energy there is a breakdown of the model which calls

for further improvements. The major ingredient that lacks the model is FSI,
which I introduce phenomenologically as described in section 7. Indeed, the
fits are greatly improved – specially the fits of the imaginary parts of the
multipoles – when FSI are included, as it stems from the comparison of the
χ2 (Table 7.1). The experimental data are quite well reproduced by theory
with better quality for the low energy region than for the high energy (900
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MeV and further), where some of the fits start to deviate from the data
increasingly with energy (i.e. Im

[

Mp
1+

]

and Im
[

En
0+

]

). In this section I focus
on fits that include FSI, except in the case in which comparison with non-FSI
sets provides relevant information.

Despite of the difference between SP and Vrana et al. masses and widths,
the curves that I obtain for sets #2 and #3 are very close to each other (so
are their χ2, see Table 7.1), sometimes undistinguishable, except for some
high order multipoles as Im

[

Mp
2−

]

. Curves from set #1 do not reproduce
data as well as #2 and #3 do and the χ2 is almost twice as large due to the
additional restrictions in the values of the parameters.

If I go through the multipoles in detail, it is convenient to start with

E
3/2
1+ and M

3/2
1+ (both in Fig. 9.1) which provide information about the most

important low-lying nucleon resonance, the ∆(1232). These multipoles are of
great interest at present and a lot of experimental effort has been put in the

study of the ∆(1232) in the last years [Bel 99, Bla 01]. The M
3/2
1+ presents

a quite simple structure which is very well reproduced by all my sets and
is not affected by FSI. That is why all sets are quite similar. Sets #1, #4,
and #5 overestimate the multipole peaks which will cause an overestimation
of the cross section as will be seen in section 12. The situation is much
more complicated for the E

3/2
1+ , where the FSI are critical, as can be inferred

when I compare data to sets with and without FSI and check the strong
differences among them. For these multipoles, data cannot be well reproduced
without the inclusion of δFSI . When the latter is included the multipoles
show an abrupt change at

√
s = 1.249 GeV. This behaviour is also seen in

experimental data.
The multipoles Mp

1− and Mn
1− are closely related to the N(1440) reso-

nance. If I focus on sets #2 and #3, when δFSI is included the fits look quite
well except for the real part of the Mn

1− (second figure of the left panel in
Fig. 9.3) where a serious discrepancy between theory and data is found in
the 0.2 − 0.5 GeV energy range. Also, a rather odd behaviour in the M p

1− is
found between 0.3 and 0.4 GeV (see Fig. 9.2), where no experimental data
are available. For these multipoles related to N(1440) resonance, background
and resonant contributions are not well established. As a consequence, the
parameters of the P11 resonance cannot be well determined. These multi-
poles also show the importance of FSI in the model in order to determine
the properties of the resonances because of the large discrepancies among fits
with and without δFSI . However, if I focus on sets #1 and #4, FSI do not
seem so important when the PDG values are used. Actually, set #4 provides
better results than set #1 except for the high energy region of Re

[

Mp
1−

]

and

Re
[

Mn
1−

]

. More research on the properties of this resonance (and of its role
in nuclear medium) has to be done in forthcoming years [KS 03].

Resonance N(1520) contributes mainly to Ep,n
2− and Mp,n

2− due to its angu-
lar momentum and isospin. It also contributes sizeably to other multipoles.

The s-channel contributes to Mp
1+ and its crossed term to Im

[

M
3/2
1−

]

as back-
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Fig. 9.1. Electromagnetic multipoles for the isospin-3/2 channel. Data have been
taken from Ref. [SAID]. Photon energy is given in the laboratoy frame. Curves
conventions: thick green set #1; thick blue set #2; thick red set #3; thin green set
#4; thin blue set #5; thin red set #6.
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Fig. 9.2. Electromagnetic multipoles for the isospin-1/2 proton channel. Same
conventions as in Fig. 9.1 apply. Data have been taken from Ref. [SAID]
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Fig. 9.3. Electromagnetic multipoles for the isospin-1/2 neutron channel. Same
conventions as in Fig. 9.1 apply. Data have been taken from Ref. [SAID]
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Fig. 9.4. Examples of various contributions to the multipoles. Left panel shows
the M

3/2

1+ multipole, right panel the Ep
0+ multipole. Data have been taken from

Ref. [SAID]. All the curves have been obtained using set #2 parameters. Thick
green: Born terms contribution; thin green: vector-meson contributions; thick red:
direct terms contribution from resonances; thin red: crossed terms contribution
from resonances; thin blue: full calculation without FSI; thick blue: full calculation
with FSI.

ground. It also has small contributions to the background of other multipoles.
Considering set #2 and multipoles Ep,n

2− and Mp,n
2− , the agreement is excellent

except where there are few experimental data. Set #3 overestimates the peak
of the resonance in the multipoles and so will do for the cross section.

E
3/2,p,n
0+ multipoles get contributions from Born terms and vector mesons

mainly. Resonances N(1535), ∆(1620), and N(1650) only contribute in the
high energy region, where they acquire great importance defining the shape
of the multipoles. For example, the cusp peak that shows up in Im

[

Ep,n
0+

]

(Figs. 9.2 and 9.3) is due to the structure of the phenomenological width –
Eq. (3.71) – and to the inclusion of the partial decay width Γη/Γ in N(1535)
resonance. Multipoles Ep,n

0+ are well reproduced by sets #2 and #3, except

in the high energy region for Im
[

En
0+

]

. The multipole E
3/2
0+ (Fig. 9.1) is not

so well reproduced in the intermediate energy region (0.4 − 0.8 GeV), with
an overestimation of the real part and an underestimation of the imaginary
part. This indicates that the prediction of the model is correct for the absolute
values of the multipoles and that there may be a problem with the phases.

Only one resonance remains to be commented, ∆(1700), which is associ-

ated mainly to multipoles E
3/2
2− and M

3/2
2− . As one can see in Fig. 9.1, when
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enough data points are available the fits are good, yet the large ambiguities
in the mass and width of this resonance make somewhat unreliable the deter-
mination of its coupling constants and its contribution to the observables (see
Table 7.2). Further research on the properties of this resonance is necessary.

In figure 9.4 I show two examples of the various contributions to the
multipoles using the coupling constants of set #2. It is clear that, without FSI
the Born terms and vector mesons do not contribute to the imaginary part of
the multipoles and represent a background — it has to be noticed that when
the FSI are included, they do contribute to both real and imaginary parts of

the multipole. Left panel shows the multipole M
3/2
1+ , whose main contribution

is the ∆(1232). In this multipole, FSI are not important and curves with
and without SAID phases differ little. Thus, the phenomenological width
included is enough to describe accurately the multipole and its structure is
quite simple. However, the situation is different for the multipole Ep

0+ which
exhibits a more complex structure because its dominant contribution comes
from Born terms and vector mesons. In the absence of FSI, the imaginary
part of this multipole is practically zero up to 0.8 GeV. The inclusion of
FSI makes Born and vector mesons contribute to the imaginary part too,
improving agreement with data.

I have not considered spin-5/2 resonances in the model. This will be re-
quired in order to extend the model to multipoles of higher angular momen-
tum. For the energy range considered here, their contribution is expected
not to be important, although their contribution to the background could
improve the agreement with data.

9.2 E2/M1 Ratio of the ∆(1232)

From general symmetry principles, the emission of a photon by a spin-3/2
system that becomes spin-1/2, involves transverse electric quadrupole (E2)
and magnetic dipole (M1) multipolarities. Likewise, this is the case of the
absorption of a real photon by a spin-1/2 to reach spin-3/2. In the absence
of knowledge of the internal structure of the system, an estimate of the ra-
tio between the two multipolarities can be made by resorting to Weisskopf
[BW 91] units for multipole strengths in nuclear systems. For the excitation
of a nucleon into a ∆(1232) (γ +N → ∆) this estimate gives

RW =

√

(

SE2

SM1

)

= 1.07 · 10−3R2
0 (M∆ −MN ) , (9.1)

with the nucleon radius R0 in fm and the mass difference in MeV. In what
follows I refer to this value as the Weisskopf ratio (RW ). Taking a radius
R0 = 0.875 [PDG 04] and a mass difference (M∆ −MN ) ' 270 one gets
RW ' 0.22.
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Within the quark model, a single quark spin flip is the standard picture
for the photoexcitation of the nucleon into a∆, assuming spherically symmet-
ric (L = 0) radial wave functions of both parent and daughter. Under these
premises, an E2 transition cannot take place, as it was first noticed by Becchi
and Morpurgo in their 1965 paper [BM 65], where they concluded that a value
of the E2/M1 ratio (EMR) much smaller than RW should be considered as a
test of the model. As early as 1963 values of EMR small but different from zero
were reported in the literature [GS 63a, GS 63b] which was supported by fur-
ther experiments later on [Bec 97, Bla 01, DMW 86, Mol 96, Pei 96, Wis 99].
A non-vanishing E2 multipolarity evokes a deformed nucleon picture [Gla 79].
In an extreme rotational model approximation the nucleon could be consid-

ered as the head of a Kπ = 1
2

+
rotational band ( 1

2

+
, 3

2

+
, 5

2

+
, . . . ), in anal-

ogy to rotational nuclear bands. In this picture the electromagnetic current
and multipoles for the transition between the members of the band can be
parametrized in terms of intrinsic single particle and collective multipoles
[Moy 86]. In particular, the E2 multipole for the transition (γ + N → ∆)
would be given in terms of the intrinsic quadrupole moment (Q0) by the
relation [BM 98, Moy 86]

M (E2) = 〈1
2

1

2
20|3

2

1

2
〉
√

5

8π
Q0 = 0.282Q0. (9.2)

In turn, Q0 would be related to the spectroscopic quadrupole moment of the
∆ by

Q0 = −5Q∆. (9.3)

Hence, the relationship between the static ∆(1232) quadrupole moment
and the E2 multipole for the N → ∆ transition is

M (E2, N → ∆) = − 5√
4π
Q∆. (9.4)

Within this picture, a negative (positive) static quadrupole moment im-
plies a prolate (oblate) intrinsic deformation, which is not always well stated
in the literature.

Over the last few years much effort has been invested in the determi-
nation of quadrupole deformation in the nucleon [BH 91, KS 03]. Because
the spin of the nucleon is 1/2, a possible intrinsic quadrupole deformation
is not directly observable and its study requires research on its lowest-lying
excitation – ∆(1232) – and its decay through pion emission. Hints on the pos-
sible deformation will be deduced via the EMR. In the context of the quark
model, De Rújula, Georgi, and Glashow [RGG 75] were the first to suggest a
tensor force arising from one-gluon exchange and leading to d-state admix-
tures. On the other hand Buchmann and collaborators [BHF 97] pointed out
that a non-zero E2 transition could be due to one-gluon or meson-exchange
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currents. While debate on the physical interpretation of the EMR may still
be far from closed, a more precise determination of the EMR value is both
possible and mandatory.

In order to extract the EMR from experiment, a realistic model of the
reaction must be employed that takes into account the FSI of the outgoing
pion as well as the relevant symmetries. Only then can the ratio deduced from
the experimental data be compared to the predictions of nucleonic models —
namely, quark models [BHF 97, BM 65, Fae 00], skyrme models [WW 87],
and lattice QCD [Ale 05, LDW 93]. Theoretical interest in this topic has
been strongly renewed and either new or well-known approaches have been
(re)investigated with the latest theoretical advances such as new dynamical
models [PT 04, SL 01] and non-pathological spin-3/2 treatments [FMU 06a,
PT 04]. A complete account of the experimental and theoretical work done
on this topic goes well beyond the scope of this thesis. For a review of the
subject I refer the reader to Ref. [KS 03].

A key point in the extraction of the EMR is the reaction model used
for the analysis of data. Reaction models have to be developed carefully in
order to consider the underlying physics and to minimize model dependen-
cies as well as theoretical uncertainties. Ambiguities in the contribution of
the background terms, unitarization, or even formal elements (such as the
recently improved spin-3/2 description or the crossing symmetry) can spoil
the determination of the parameters of the resonances. This is so even for a
well isolated resonance as is the ∆(1232). A determination of the ∆(1232)
parameters requires one to study the photoproduction reaction not only in
the first resonance region, as commonly has been done, but in further kine-
matical regions in order to keep under control the high energy behavior of
the resonance contribution. For example, in a Breit-Wigner model, the inclu-
sion of Regge poles, which take into account heavy meson exchanges, does
affect the determination of the ∆(1232) coupling constants because of the
modification of the tail of the resonance [Azn 03].

Table 9.1. Intrinsic (or bare) EMR (from Eq. (9.6)) and parameters of ∆(1232) for
the two fits considered. M∆ is the mass, A∆

1/2 and A∆
3/2 are the helicity amplitudes,

G∆
E is the electric form factor, and G∆

M is the magnetic form factor.

Set #2 Set #3

M∆ (MeV) 1215 ± 2 1209 ± 2

A∆
1/2 (GeV−1/2) −0.123 ± 0.003 −0.123 ± 0.003

A∆
3/2 (GeV−1/2) −0.225 ± 0.005 −0.224 ± 0.004

G∆
E −0.076 ± 0.042 −0.071 ± 0.042

G∆
M 5.650 ± 0.070 5.701 ± 0.071

EMR (−1.35 ± 0.74) % (−1.24 ± 0.74) %



96 9 Analysis of the Electromagnetic Multipoles

Caution must be taken with the various definitions of EMR employed
in the literature. It should be distinguished between the intrinsic EMR of
the ∆(1232) and the directly measured value which is often called physical

or dressed EMR value [PT 04, SL 01] and which is obtained as the ratio

between the imaginary parts of E
3/2
1+ and M

3/2
1+ at the Eγ value at which

Re
[

M
3/2
1+

]

= 0 = Re
[

E
3/2
1+

]

. Since all the reaction models are fitted to

the experimental electromagnetic multipoles, they generally reproduce the
physical EMR value. This is also the case in my model, where I get

EMRexp =
Im

[

E
3/2
1+

]

Im
[

M
3/2
1+

] = (−3.9 ± 1.1) % (9.5)

for 328 MeV ≤ Eγ ≤ 343 MeV. This value compares well with the value ob-
tained by LEGS Collaboration at Brokhaven National Laboratory in Ref.
[Bla 01], EMRexp = (−3.07 ± 0.26 (stat.+syst.) ± 0.24 (model)) %, and is
somewhat higher than the PDG value, EMRexp = (−2.5 ± 0.5) %.

However, this measured EMR value is not easily computed with the theo-
retical models of the nucleon and its resonances. Instead, in order to compare
to models of nucleonic structure, it is better to extract the bare EMR value
of ∆(1232) which is defined as:

EMR =
G∆

E

G∆
M

= − (M∆ −M) g2
2 (M∆ +M) g1 + (M∆ −M) g2

× 100%. (9.6)

This depends only on the intrinsic characteristics of the ∆(1232) and can
thus be compared directly to predictions from nucleonic models. It is not,
however, directly measurable but must be inferred (in a model dependent
way) from reaction models.

The connection between both definitions of EMR values is straightforward
when FSI are neglected as can be found in the paper by Jones and Scadron
[JS 81]. In my formalism, both values can be connected from the definitions
of the electromagnetic multipoles [FMU 06a] and their connection to the γ+
N → ∆ transition Lagrangian. In my calculation, the numerical differencies
between the dressed and the bare EMR values are attributed to FSI.

In Table 9.1 I quote my extracted bare EMR values obtained from Eq.
(9.6) together with the mass, helicity amplitudes, and electromagnetic form
factors at the photon point of the ∆(1232).

In my calculations I have considered the pole mass of the resonance instead
of the Breit-Wigner mass [FA 03, PT 04, SL 01]. One must be aware of the
fact that electromagnetic coupling constants are very sensitive to the mass
and that the width of the ∆(1232) and the multipoles vary rapidly in the
region around the peak of the ∆(1232). Thus, a variation in the mass of the
resonance affects the determination of the EMR value. This is also seen in
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Table 9.2. Comparison of EMR values from nucleonic models and EMR values
extracted from data predicted through several reaction models (see text).

Physical EMR, experiments EMR Ref.

LEGS Collaboration (−3.07 ± 0.26 ± 0.24) % [Bla 01]
Particle Data Group (−2.5 ± 0.5) % [PDG 04]

Physical EMR, reaction models

Fuda and Alharbi −2.09% [FA 03]
Pascalutsa and Tjon (−2.4 ± 0.1)% [PT 04]
Sato and Lee −2.7% [SL 01]
This Thesis (average) (−3.9 ± 1.1)% [FMU 06b]

Extractions of bare EMR, reaction models

Davidson, Mukhopadhyay, and Wittman −1.45% [DMW 91]
Garcilazo and Moya de Guerra −1.42% [GM 93]
Pascalutsa and Tjon (3.8 ± 1.6)% [PT 04]
Sato and Lee −1.3% [SL 01]
Vanderhaeghen et al. −1.43% [VHRW 95]
This Thesis (average) (−1.30 ± 0.52) % [FMU 06b]

Bare EMR, predictions from nucleonic models

Non-relativistic quark model 0% [BM 65]
Constituent quark model −3.5% [BHF 97]
Skyrme model (−3.5 ± 1.5)% [WW 87]
Lattice QCD (Leinweber et al.) (3 ± 8)% [LDW 93]
Lattice QCD (Alexandrou et al.) [Ale 05]

(Q2 = 0.1 GeV2, mπ = 0) (−1.93 ± 0.94)%
(Q2 = 0.1 GeV2, mπ = 370 MeV) (−1.40 ± 0.60)%

Table 9.1. Out of the two results given in Table 9.1 I adopt as my final result
the average value for the bare EMR= (−1.30 ± 0.52) %.

In Table 9.2 I compare my average EMR [FMU 06b] values (bare and
dressed) to the ones extracted by other authors using other models for pion
photoproduction, as well as to predictions of nucleonic models. My bare result
is similar to that from Ref. [SL 01]. However, it disagrees with the bare value
derived with the dynamical model of Pascalutsa and Tjon [PT 04], where
a positive deformation of the ∆(1232) (EMR= (3.8 ± 1.6) %) is inferred. I
compare to their model because, together with the one I employ in this work,
they were the only available models that include non-pathological ∆(1232)
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Lagrangians. The discrepancy is not so worrysome if I recall that dynamical
models have ambiguities in the determination of the bare value of EMR
[WWA 96] that is highly model dependent as it stems from the comparison
among different dynamical models, namely Refs. [FA 03, PT 04, SL 01]. More
recently [PV 05] the dependence of the effective chiral perturbation theory
on the small expansion parameters was fully exploited to reconcile the (bare)
lattice QCD calculations with the physical EMR values.

In conclusion, the bare EMR value derived from the multipole experi-
mental data with my realistic ELA model is compatible with some of the
predictions of the nucleonic models. In particular it agrees very well with the
latest lattice QCD calculations [Ale 05] and suggests the need for further im-
provements in quark models. The comparison of my extracted EMR value to
RW is indicative of a small oblate deformation of the ∆(1232). In my work we
show that an ELA which takes into account FSI is also able to reconcile the
physical EMR value with the lattice QCD calculations prediction for EMR. I
consider that my picture and that of Ref. [PV 05] are complementary. Thus,
both pictures will help to understand the issue of the ∆(1232) deformation
as well as the properties of other resonances.
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SPECIAL attention has to be paid to the behaviour of the model at
low/threshold energy, because, in the low energy limit, cross sections and

multipoles are predicted by Low Energy Theorems (LET) [Ber 91, NKF 90]
and Chiral Perturbation Theory (ChPT) [BKM 92, BKM 95]. Owing to
the change in the spin-3/2 coupling scheme, the threshold energy results
change substantially when compared to previous works. In particular, in Ref.
[GM 93], that employed the off-shell formalism, it was found that the contri-
butions from resonances, direct and crossed terms, were of great importance
in order to explain the reduced cross section at threshold and the low energy
behavior of the cross section. These contributions were particularlly impor-
tant in neutral processes, mainly because of ∆(1232), and represented practi-
cally the total contribution to the nπ0 production channel [Fer 03]. However,
in the present calculation I obtain a zero contribution to the reduced cross
section at threshold from both direct and crossed resonance terms. The rea-
son for such a change is the spin-3/2 coupling scheme used in the present
thesis, which has no spurious spin-1/2 sector. The reduced differential cross
section at threshold is proportional to the E0+ multipole [BKM 92], which
is a spin-1/2 one. Thus, at threshold, any contribution of the direct channel
from spin-3/2 resonances is a contamination which unveils a pathology in the
model. This is the case of models based upon the traditional spin-3/2 formal-
ism explained in chapter 3.4.1, as the one used in Ref. [GM 93]. This result is
independent on the phenomenology of the decay width and on the form fac-
tors. Therefore, I conclude that, at threshold, only Born terms (Fig. 3.1) and
vector mesons (Fig. 3.2, diagram (e)) contribute, as the spin-1/2 resonances
are at much higher energy. In Table 10.1 I present results for the reduced
cross section at threshold for the four different processes and I find a good
agreement with experimental values. Tiny differencies are found with various
parameter sets (#1 to #6) that use different cutoff Λ and small variations in
the vector-meson parameters.
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Table 10.1. Reduced cross section at threshold q∗

k∗
dσ
dΩ

in µb/sr. Experimental data
have been taken from Ref. [GM 93].

Sets #1 #2 #3 #4 #5 #6 Experiment

γp → pπ0 0.0984 0.0998 0.0998 0.0949 0.1023 0.1020 0.094 ± 0.017
γn → nπ0 0.0046 0.0045 0.0045 0.0049 0.0044 0.0044
γn → pπ− 18.92 18.93 18.93 18.91 18.95 18.95 20.4 ± 0.7

20.0 ± 0.3
19.7 ± 1.4

γp → nπ+ 14.51 14.50 14.50 14.52 14.48 14.49 15.4 ± 0.5
15.6 ± 0.5



11 Differential Cross Sections and
Asymmetries

THE polarised differential cross section can be expressed in terms of six
observables

dσpol.

dΩ
= σ (θ) ×F (P, T,Σ,G,H) , (11.1)

where σ (θ) is the unpolarised differential cross section and P , T , Σ, G,
and H are asymmetries. In this section I show results for the differential
cross sections together with results for this five asymmetries. Details on the
definition of these quantities can be found in Refs. [ALR 90, BDS 75, Bus 79,
Bus 80, Ros 54, Wal 69].

The recoil nucleon polarisation P is the polarisation of the nucleon along
the direction ~q ∧ ~k/|~q ∧ ~k| for photon helicity λγ = 1 (for λγ = −1 the same
value for the asymmetry holds).

T stands for the polarised target asymmetry, experimentally defined by

T (θ) =
σ+ − σ−
σ+ + σ−

, (11.2)

where σ+ and σ− are the differential cross sections for target nucleon polarised

up and down in the direction ~q ∧ ~k/|~q ∧ ~k|.
Σ is the polarised photon beam asymmetry

Σ (θ) =
σ⊥ − σ‖

σ⊥ + σ‖
, (11.3)

where σ⊥ and σ‖ are the differential cross sections for photons with perpen-
dicular and parallel polarisations to the reaction plane.

G and H are related to double polarisation measurements (see Fig. 11.1 to
follow their definitions). For the G asymmetry the target nucleon is polarised
along z axis and the photon is linearly polarised at angle π

4 rad (−π
4 rad) to

the reaction plane (the polarisation vector belongs to the xy plane). For the
H asymmetry the target nucleon is polarised perpendicularly to the x axis
and the photon has the same polarisation than for the G asymmetry.

Table 11.1 shows the number of experimental data available up to 1 GeV
for all the four one pion photoproduction processes.
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Fig. 11.1. Kinematics for the photoproduction process.

Table 11.1. Number of data points in the SAID database up to 1 GeV, Ref. [SAID].

Observable γp → π0p γn → π0n γp → π+n γn → π−p

σ (θ) 5119 120 3868 1686
P (θ) 363 0 163 82
Σ (θ) 530 0 780 154
T (θ) 251 0 585 89
G (θ) 0 0 32 0
H (θ) 0 0 89 0

σ 500 0 70 98

The asymmetries are of great interest in the search for missing resonances
which do not show up so clearly in other observables [DGL 02]. The formulae
relating the amplitudes with the asymmetries will be presented in the forth-
coming paragraphs. I provide a wide sample of figures in order to have a broad
outlook of the comparison of the model with the data whenever available.

The FSI treatment described in chapter 7 has been applied only to the
γp → π0p process. For the other three pion production processes, no FSI
phases have been included because I have no means to determine them from
the available data. I calculate the observables for these processes for the six
sets of coupling constants obtained by fitting γp → π0p multipoles, given
in Tables 7.1 and 7.2. Thus, these calculations have no adjustable parame-
ters. As I shall see in what follows, an overall good agreement with data is
found. As the energy increases, differences among the curves obtained with
the different sets of parameters show up more. The comparison with the data
favours the sets of coupling constants obtained using FSI.
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Fig. 11.2. Differential cross section in µb/sr of the γp → π0p reaction for different
photon energies in the laboratory frame. θ is the pion scattering angle in the center
of mass reference frame. The data have been taken from reference [SAID] and are
within the range Eγ ± 1 MeV. Curve conventions: thick green, set #1; thick blue,
set #2; thick red, set #3; thin green, set #4; thin blue, set #5; thin red, set #6.

First I consider the process γp → π0p, for which the experimental
database has been largely increased in the last ten years mainly thanks to
the experimental programs developed at Mainz (MAMI) and Brookhaven
(LEGS). For this process the amount of experimental information is much
larger than for any other pion photoproduction process. Even so, the database
on asymmetries is not yet large enough and more measurements are needed
in order to fill in the existing gaps. Figs. 11.2 and 11.3 show theoretical curves
for the differential cross sections compared to experimental data. Differen-
tial cross sections have been calculated using equations from chapter 2 and
amplitudes from chapter 4.

I recall that among the eight helicity amplitudes, only four of them are
independent

HN = A1/2,−1/2,1 = −A−1/2,1/2,−1, (11.4)

HSF = A−1/2,−1/2,1 = A1/2,1/2,−1, (11.5)

HSA = A1/2,1/2,1 = A−1/2,−1/2,−1, (11.6)

HD = A−1/2,1/2,1 = −A1/2,−1/2,−1, (11.7)

and that in terms of these four independent helicity amplitudes, it is possible
to define every physical observable [AWLR 90a]. In particular, the five asym-
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Fig. 11.3. Same as in Fig. 11.2. Experimental data are within the range Eγ ± 3
MeV.

metries previously mentioned can ve expressed in terms of these independent
helicity amplitudes.

Focusing on sets with δFSI phases, the fits are qualitatively good in the
whole energy region, and even quantitatively in the range 250 − 400 MeV.
Asymmetries are well predicted in almost the whole energy range.

In Fig. 11.4 I provide recoil nucleon polarisation asymmetries (P ) defined
by

σ (θ)P (θ) = − 1

64π2s∗
k∗

E∗
γ

Im
[

HSF H̄D +HN H̄SA

]

, (11.8)

where the bar over the helicity amplitudes Hj stands for complex conjugate
and σ (θ) for the differential cross section given by Eq. (2.12). Up to 600
MeV, data are well reproduced by sets with FSI. Above this energy, data are
reproduced qualitatively but not quantitatively.

In Fig. 11.5 I present the polarised target asymmetry (T ) given by equa-
tion

σ (θ)T (θ) =
1

64π2s∗
k∗

E∗
γ

Im
[

HSF H̄N +HDH̄SA

]

. (11.9)

Up to 400 MeV the six curves are very similar. For 500 and 580 MeV the sets
with phases provide good results and the sets without phases do not. The
high energy region (700 and 800 MeV) is not well reproduced in general.

Polarised beam asymmetry (Σ) is well predicted in the whole energy range
by sets with FSI (Fig. 11.6). Even sets without FSI provide good results
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Fig. 11.4. Recoil nucleon polarisation of the γp → π0p. Photon energy in the
laboratory frame. Pion angle in the center of mass reference system. Experimental
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11.2.
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Fig. 11.6. Photon beam asymmetry of the γp → π0p reaction. Experimental data
are within the range Eγ ± 3 MeV. Same conventions as in Fig. 11.4.

except in the very high energy region (800 MeV). Helicity amplitudes are
related to Σ through

σ (θ)Σ (θ) =
1

64π2s∗
k∗

E∗
γ

Re
[

HSF H̄SA −HN H̄D

]

. (11.10)

In short, compared to data, good agreement is obtained for energies below
800 MeV. Beyond that energy some observables (v.g. Σ) are also reasonably
well described

In the energy region considered here there are no experimental data on
the other two asymmetries G and H. These asymmetries are expressed in
terms of helicity amplitudes by means of the following equations

σ (θ)G (θ) = − 1

64π2s∗
k∗

E∗
γ

Im
[

HSF H̄SA +HN H̄D

]

, (11.11)

σ (θ)H (θ) = − 1

64π2s∗
k∗

E∗
γ

Im
[

HSF H̄D +HSAH̄N

]

. (11.12)

I have also calculated these asymmetries and my results are presented in Figs.
11.7 and 11.8.

11.2 γn → π0n

The situation for the γn → π0n process is quite different from the previous
case. The amount of experimental information is very small: No asymmetry
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Fig. 11.7. G asymmetry of the γp → π0p reaction. Same conventions as in Fig.
11.4.
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data are available and differential cross section data are scant. In Fig. 11.9
I show differential cross sections and in Figs. 11.10, 11.11, 11.12, 11.13, and
11.14 the predicted asymmetries (P , T , Σ, G, and H respectively) obtained
with the different sets of parameters. There is a reasonable agreement with
data, and sets #1 and #4 (PDG values) provide the best overall results.
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Fig. 11.9. Differential cross section of the γn → π0n reaction. Experimental data
are within the range Eγ ± 5 MeV. Same conventions as in Fig. 11.2.

11.3 Charged Pion Production

In the next paragraphs I go in detail through the predicted differential cross
sections and asymmetries for charged pion processes, and compare them to
available data (Figs. 11.15–11.26).

γp→ π+n differential cross sections (Fig. 11.15) are well predicted by the
model in the whole energy range by all parameter sets. In the high energy
regime (two last figures of the panels) differential cross sections are not well
predicted by any of the parameters sets in the forward scattering region, with
the exception of set #1 (PDG with δFSI) which provides an impressively good
agreement. For the P asymmetry (Fig. 11.16) all curves are alike and repro-
duce data correctly up to 400 MeV. As the energy is increased, sets #1 and
#4 (PDG values) provide the best results. The T asymmetry is qualitatively
well predicted, but quantitative agreement is only achieved up to 500 MeV
(Fig. 11.17). Sets with and without FSI provide a good agreement with data
for the Σ asymmetry (Fig. 11.18). Only in the last figure of the panel (700
MeV) I observe different qualitative behaviours from one set of constants to
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Fig. 11.10. Recoil nucleon polarisation of the γn → π0n. Same conventions as in
Fig. 11.4.
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Fig. 11.11. Polarised target asymmetry of the γn → π0n reaction. Same conven-
tions as in Fig. 11.4.
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Fig. 11.12. Photon beam asymmetry of the γn → π0n reaction. Same conventions
as in Fig. 11.4.
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Fig. 11.13. G asymmetry of the γn → π0n reaction. Same conventions as in Fig.
11.4.
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Fig. 11.14. H asymmetry of the γn → π0n reaction. Same conventions as in Fig.
11.4.
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Fig. 11.15. Differential cross section of the γp → π+n reaction. Experimental data
are within the range Eγ ± 5 MeV. Same conventions as in Fig. 11.2.
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Fig. 11.16. Recoil nucleon polarisation of the γp → π+n reaction. Experimental
data are within the range Eγ ± 3 MeV. Same conventions as in Fig. 11.4.
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Fig. 11.17. Polarised target asymmetry of the γp → π+n reaction. Experimental
data are within the range Eγ ± 4 MeV. Same conventions as in Fig. 11.4.
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Fig. 11.18. Photon beam asymmetry of the γp → π+n reaction. Experimental
data are within the range Eγ ± 4 MeV. Same conventions as in Fig. 11.4.
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Fig. 11.19. G asymmetry of the γp → π+n reaction. Experimental data are within
the range Eγ ± 3 MeV. Same conventions as in Fig. 11.4.
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another. Data are scant and not reliable for G and H asymmetries. As for
previous asymmetries, in the low energy regime all the curves are alike, but
as energy is increased their predictions become different.
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Fig. 11.20. H asymmetry of the γp → π+n reaction. Experimental data are within
the range Eγ ± 3 MeV. Same conventions as in Fig. 11.4.
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Fig. 11.21. Differential cross section of the γn → π−p reaction. Experimental data
are within the range Eγ ± 4 MeV. Same conventions as in Fig. 11.2.
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Fig. 11.22. Recoil nucleon polarisation of the γn → π−p reaction. Experimental
data are within the range Eγ ± 1 MeV. Same conventions as in Fig. 11.4.

Differential cross section data for the reaction γn → π−p are well pre-
dicted by the sets with FSI (#1, #2, and #3). All the curves are similar for
the P asymmetry (Fig. 11.22) and are close to data. Overall agreement is
good for the T asymmetry (Fig. 11.23). This agreement becomes excellent
for the highest energy (Eγ = 802 MeV) if I consider only curves #2 and #3.
Σ asymmetry (Fig. 11.24) is very well predicted by curves #2 and #3 in the
whole energy range. All predictions are qualitatively quite similar for the G
and H asymmetries (Figs. 11.25 and 11.26) except for Eγ = 800 MeV, where
large differences are found.

The model works quite well for processes with charged pions. This is re-
markable if I take into account that no δFSI have been included, and indicates
that FSI are not as important in the studied energy region for charged pi-
ons as they are for neutral pion channels. Quantitatively, the model provides
satisfactory results nearly in the whole energy range and in almost every ob-
servable. Even in the cases where good quantitative result is not achieved, at
least the qualitative behavior of data is well reproduced (i.e. Figs. 11.15 and
11.17).
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Fig. 11.23. Polarised target asymmetry of the γn → π−p reaction. Experimental
data are within the range Eγ ± 5 MeV. Same conventions as in Fig. 11.4.
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Fig. 11.24. Photon beam asymmetry of the γn → π−p reaction. Experimental
data are within the range Eγ ± 1 MeV. Same conventions as in Fig. 11.4.
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Fig. 11.25. G asymmetry of the γn → π−p reaction. Same conventions as in Fig.
11.4.
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Fig. 11.26. H asymmetry of the γn → π−p reaction. Same conventions as in Fig.
11.4.





12 Cross Sections

FINALLY, in this chapter I present results for the total cross sections
compared to available experimental data in Fig. 12.1. The two upper

figures show the total cross section for charged pion channels and the two
lower are for neutral pion photoproduction.

It is interesting to notice how some of the observed effects in the multipoles
show up in the cross sections. For example, sets #1, #4, and #5 overestimate

the first resonance region due to the overestimation of M
3/2
1+ peak. On the

other hand, set #4 presents a cusp peak in multipole Im
[

Ep
0+

]

, that also
shows up in the cross section, specially so in the π+n channel. The high
energy behaviour is well regularized. Nevertheless, it has to be considered
that I do not take into account resonances D15 and F15 which may change
the shape of the cross section in the second resonance region.

The low enery behaviour of the charged processes is quite well reproduced
by all the sets of parameters. Actually, curves obtained with coupling con-
stants from sets #1 and #2 agree quite well with data in almost the whole
energy range. Other sets do not provide good results: sets #5 and #6 over-
estimate greatly the second resonance region for π−p channel, and set #4
does the same in π+n channel. Overestimation of the second resonance re-
gion by set #3 is due to the overestimation of multipoles related to resonance
N(1520).

Concerning the γn→ π0n channel I found several differences among sets
either in the region of the first or in the region of the second resonance. As no
data are available for π0n total cross sections, I rely on results on differential
cross section to infer that up to 400 MeV, sets #2 and #3 may provide a
good estimation of the total cross section and that beyond that energy, there
may be probably an underestimation of the total cross section.

In summary, I conclude that set #2 is the most reliable one because it
provides the best results when all data are considered as a whole. This is so
regardless of the fact that other sets may provide better fits to individual
cases. For instance, set #6 provides the best fit to π0p total cross section and
set #1 is very good for charged pion channels. As a matter of fact, set #2
has the lowest χ2 for the electromagnetic multipoles. With this set, the only
deviations from experimental data in the total cross section are the slight
underestimation of π+n and π0p processes beyond 400 MeV.
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Fig. 12.1. Total cross section as a function of photon energy in laboratory frame. Same curve conventions as in Fig. 11.2.



13 Summary and Final Remarks

I have elaborated on a pion photoproduction model which is based on an Ef-
fective Lagrangian Approach (ELA) and is guided by Weinberg’s theorem,

fulfilling chiral symmetry, gauge invariance, and crossing symmetry. I have in-
cluded Born terms, ρ and ω mesons exchange, and seven nucleon resonances:
∆(1232), N(1440), N(1520), N(1535), ∆(1620), N(1650), and ∆(1700). Un-
der these premises, the model is independent of the underlying subnuclear
physics (quarks, gluons), which is embedded in the parameters of the model,
such as coupling constants, masses, and widths.

With respect to former models along similar lines, this is the first one that
covers all the well established spin-1/2 and spin-3/2 resonances up to 1.7 GeV
and, at the same time, fulfills gauge invariance as well as chiral and crossing
symmetries. Crossing symmetry could not be achieved in previous models,
such as the one of Ref. [GM 93] due, among other things, to pathologies of
former spin-3/2 Lagrangians. This problem is fixed in the present work by:

(a) the use of a spin-3/2 Lagrangian due to Pascalutsa that contains no
spurious spin-1/2 components in the direct channel,

(b) the use of consistent, energy dependent, strong couplings and widths, as
well as form factors.

One of the goals of this thesis is to establish a reliable set of parameters for
the model. In addition to the cutoff Λ – which is related to short-distance
effects and can be considered as the only free parameter of the model – I
adjust electromagnetic coupling constants of the nucleon resonances within
the usually accepted ranges. The determination of the parameters has been
performed by fit to the experimental γp → π0p multipoles, through a min-
imization procedure. In the minimization I have considered three different
sets of masses and widths:

(a) Masses and widths taken from PDG with electromagnetic coupling con-
stants within the PDG error bars.

(b) Masses and widths taken from the multichannel analysis of Vrana et
al. [VDL 00] with electromagnetic coupling constants considered as free
parameters.

(c) Masses and widths obtained by means of a speed plot calculation with
the electromagnetic coupling constants considered as free parameters.
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On the other hand I have considered final state interactions (FSI) phenomeno-
logically by adding an extra phase to the γp → π0p multipoles, in order to
match the current energy dependent solution of SAID phases [SAID]. In all,
I have derived six sets of parameters, one with and one without FSI for each
of the above mentioned sets of masses and widths:

(a) Sets #1 and #4.
(b) Sets #2 and #5.
(c) Sets #3 and #6.

Electromagnetic multipoles for γp→ π0p are globally well reproduced by
sets #1, #2, and #3 that include FSI. The fits without FSI (#4, #5, and
#6) are also good in the low energy regime. Other experimental observables
are surveyed such as differential cross section, asymmetries, and total cross
sections. At threshold I find good agreement with experimental data. In my
model almost all the contribution at threshold comes from Born terms at
variance with results in Ref. [GM 93].

For charged pion production, where I have no adjustable parameters, the
agreement is remarkably good for almost all the observables. I note that FSI
phases obtained for the γp→ π0p process are not applicable to charged pion
production. Thus, no FSI phases have been included in these charged pion
photoproduction calculations. The fact that I get good agreement with data
indicates that FSI are small in γp→ π+n and γn→ π−p.

Although all the parameter sets are reasonable, I favour set #2 because
of its lowest χ2 to the multipole data and its better agreement with the
total cross sections for all processes. Set #3, which also has a low χ2, is
very similar to set #2 and also yields similar helicity amplitudes for all the
resonances except for ∆(1700). This resonance is poorly known and more
precise information would be necessary. A better experimental knowledge of

multipoleM
3/2
2− would improve the determination of the properties of∆(1700)

resonance. Similarly better knowledge of the M p
1− multipole would help to

establish more reliably properties of N(1440).
For the future, it would be interesting to analyze contributions from spin-

5/2 nucleon resonances. Although they are not essential to the multipoles
considered here, they may contribute to the background and their effect can
be sizeable in the second resonance region of the total cross section and
asymmetries. The incorporation of the spin-5/2 resonances will require to take
into account higher order multipoles in the analysis. The inclusion of other
resonances not considered here (three stars in PDG and misssing resonances)
could also improve the fits in some energy regions, but it is difficult to perform
a reliable determination of the parameters without the aid of other physical
processes where their contribution would be more sizeable.

I have also studied the existence of a quadrupole deformation in the
∆(1232) resonance. The EMR of the ∆(1232) has been obtained (EMR=
(−1.30 ± 0.52) %) which compares well with the latest lattice QCD calcula-
tions and allows to reconcile the lattice QCD results with the experiments.
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The results obtained here are encouraging and estimulate the application
of this model to other processes such as pion electroproduction, two pion
production in nucleons [GO 94] and nuclei, as well as electro- and photo-
production of other mesons [JRDC 02b, JRDC 02a].
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partamento de F́ısica Atómica, Molecular y Nuclear, Universidad Com-
plutense de Madrid, June 2003.

2. C. Fernández-Ramı́rez, J.M. Ud́ıas, E. Moya de Guerra, J.R. Vignote,
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